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Posets From Polytopes

Definition
Let P a polytope with vertex set V/, and fix a linear function A.

Let L(P,)\) denote the partial order on V obtained by taking the
transitive and reflexive closure of x <y when

e [x,y] is an edge of P and
o A\(x) < Ay).



Posets from Polytopes
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Posets from Polytopes
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Posets from (normal) fans
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Posets from (normal) fans
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Posets from (normal) fans
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Motivation

Properties of the weak order on &,, and the Tamari lattice

e The Hasse diagram is (an orientation of) the one-skeleton of a
polytope.
e Both posets are lattices.

Fact
e The normal fan of the associahedron coarsens the normal fan
of the permutahedron.

e Thus, there is a canonical surjection from &, onto the Tamari
lattice T, which we denote by V.



The Canonical Surjection

Normal G of the aSsociahedron Normad fn of +he. perm utaherm

Xe €X K7

X, £x35%
L XL REx,

XX M €5

_X X1 6% g



The Canonical Surjection
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The Canonical Surjection
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The Canonical Surjection
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Goal of the talk

Theorem [Reading]

The canonical surjection W : G, — T, is a lattice quotient.
That is:

e V(wvw)=V(w)v V¥(w)
o U(w A w)=V(w)AWV(w)

Set Up

Given a graph G, we will construct a graph associahedron Pg, a
polytope whose normal fan coarsens the normal fan of the
permutahedron. Then we will construct an analogous poset L.

Question

For which G is the canonical surjection V¢ : G, — L¢ a lattice
quotient?



Notation

e Write [n] for the set {1,2,...,n}.
e G is a graph with vertex set [n].
e Let A; denote the simplex with vertex set {e; : i € | < [n]}.

Definition/Recall
Let P and @ be polytopes. The Minkowski Sum is the polytope

P+Q={x+y:xePandye Q}.

The normal fan of P is a coarsening of the normal fan of P + Q.



Graph Associahedra

Definition
A tube is a nonempty subset / of vertices such that the induced
subgraph G|, is connected.

The Graph Assocciahedron
The Graph Associahedron Pg is the Minkowski sum

P = Z A

I is a tube of G



Examples: The Complete Graph
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Examples: The Complete Graph
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Examples: The Complete Graph
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Context: Topology and Geometry

The Bergman Complex

Let M be an oriented matroid. The Bergman complex B(M) and
the positive Bergman complex B* (M) generalize the notions of a
tropical variety and positive tropical variety to matroids.

Theorem[Ardila, Reiner, Williams]

Let  be a the root system associated to a (possibly infinite)
Coxeter system (W, S) and let I' be the associated Coxeter
diagram. The positive Bergman complex BT (Ms) is dual to the
graph associahedron Pr.



The Poset L¢

Definition

Fix A= (n,n—1,...,2,1). The poset L is the partial order on
the vertex set of Pg obtained by taking the transitive and reflexive
closure of x <y when

e [x,y] is an edge of Pg and
e A(x) < Ay).



The poset Lg
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The poset Lg
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The canonical surjection
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The canonical surjection
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The canonical surjection
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The Canonical Surjection
Let W denote the surjection from &, to the poset L.
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Recap: Main Question

Theorem [Reading]

Let G be the path graph, let Lg be the associated poset. Then
canonical surjection Vg : G, — L¢ is a lattice quotient.
That is:

e Vg(w v w)=WVg(w)
. W(w A w)) = Ve(w)

v Ve (w')

AVe(w)

Question

For which G is the canonical surjection W a lattice quotient?



Main Results

Definition
We say a graph G is filled if for each edge {i, k} in G, the edges
{i,j} and {j, k} are also in G for all i < j < k.

Theorem [B., McConville]
The map W is a lattice quotient if and only if G is filled.



A filled graph
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Proof Sketch
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Hvala! Thank you!



When is L¢ a lattice?

Definition
Two tubes /, J are said to be compatible if either
e they are nested: | < Jor J< [, or
e they are separated: | U J is not a tube.
A (maximal) tubing X" of G is a (maximal) collection of pairwise

compatible tubes.

Definition / Theorem
Each cover relation in L¢ is encoded by a flip X — ) defined by:

o Y=xX\{I}u{l'}
e topy (/) < topy (/')



When is Ls a lattice?
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