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My favorite posets



Posets From Polytopes

Definition
Let P a polytope with vertex set V , and fix a linear function λ.

Let LpP, λq denote the partial order on V obtained by taking the
transitive and reflexive closure of x ď y when

• rx, ys is an edge of P and

• λpxq ď λpyq.
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Posets from (normal) fans
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Posets from (normal) fans



Motivation

Properties of the weak order on Sn and the Tamari lattice

• The Hasse diagram is (an orientation of) the one-skeleton of a
polytope.

• Both posets are lattices.

Fact

• The normal fan of the associahedron coarsens the normal fan
of the permutahedron.

• Thus, there is a canonical surjection from Sn onto the Tamari
lattice Tn which we denote by Ψ.



The Canonical Surjection
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Goal of the talk

Theorem [Reading]

The canonical surjection Ψ : Sn Ñ Tn is a lattice quotient.
That is:

• Ψpw _ w 1q “ Ψpwq _Ψpw 1q

• Ψpw ^ w 1q “ Ψpwq ^Ψpw 1q

Set Up

Given a graph G , we will construct a graph associahedron PG , a
polytope whose normal fan coarsens the normal fan of the
permutahedron. Then we will construct an analogous poset LG .

Question
For which G is the canonical surjection ΨG : Sn Ñ LG a lattice
quotient?



Notation

• Write rns for the set t1, 2, . . . , nu.

• G is a graph with vertex set rns.

• Let ∆I denote the simplex with vertex set tei : i P I Ď rnsu.

Definition/Recall

Let P and Q be polytopes. The Minkowski Sum is the polytope

P ` Q “ tx` y : x P P and y P Qu.

The normal fan of P is a coarsening of the normal fan of P ` Q.



Graph Associahedra

Definition
A tube is a nonempty subset I of vertices such that the induced
subgraph G |I is connected.

The Graph Assocciahedron

The Graph Associahedron PG is the Minkowski sum

PG “
ÿ

I is a tube of G

∆I .



Examples: The Complete Graph
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Examples: The Complete Graph



Examples



Context: Topology and Geometry

The Bergman Complex

Let M be an oriented matroid. The Bergman complex BpMq and
the positive Bergman complex B`pMq generalize the notions of a
tropical variety and positive tropical variety to matroids.

Theorem[Ardila, Reiner, Williams]

Let Φ be a the root system associated to a (possibly infinite)
Coxeter system pW , Sq and let Γ be the associated Coxeter
diagram. The positive Bergman complex B`pMΦq is dual to the
graph associahedron PΓ.



The Poset LG

Definition
Fix λ “ pn, n ´ 1, . . . , 2, 1q. The poset LG is the partial order on
the vertex set of PG obtained by taking the transitive and reflexive
closure of x ď y when

• rx, ys is an edge of PG and

• λpxq ď λpyq.



The poset LG



The poset LG



The canonical surjection
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The Canonical Surjection
Let ΨG denote the surjection from Sn to the poset LG .



Recap: Main Question

Theorem [Reading]

Let G be the path graph, let LG be the associated poset. Then
canonical surjection ΨG : Sn Ñ LG is a lattice quotient.
That is:

• ΨG pw _ w 1q “ ΨG pwq _ΨG pw
1q

• ΨG pw ^ w 1q “ ΨG pwq ^ΨG pw
1q

Question
For which G is the canonical surjection ΨG a lattice quotient?



Main Results

Definition
We say a graph G is filled if for each edge ti , ku in G , the edges
ti , ju and tj , ku are also in G for all i ă j ă k.

Theorem [B., McConville]

The map ΨG is a lattice quotient if and only if G is filled.



A filled graph



Proof Sketch



Hvala! Thank you!



When is LG a lattice?

Definition
Two tubes I , J are said to be compatible if either

• they are nested: I Ď J or J Ď I , or

• they are separated: I Y J is not a tube.

A (maximal) tubing X of G is a (maximal) collection of pairwise
compatible tubes.

Definition/Theorem

Each cover relation in LG is encoded by a flip X Ñ Y defined by:

• Y “ X ztI u Y tI 1u
• topX pI q ă topYpI

1q



When is LG a lattice?

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4 1

2

3

4

1

2

3

4


