Thrall's problem: cyclic sieving, necklaces, and branching rules FPSAC 2019 in Ljubljana, Slovenia July 2nd, 2019

> Joshua P. Swanson University of California, San Diego

> > Based on joint work with Connor Ahlbach

arXiv:1808.06043 Published version in *Electron. J. Combin.* 25 (2018): [AS18a] Slides: http://www.math.ucsd.edu/~jswanson/talks/2019_FPSAC.pdf

Outline

- We first apply the cyclic sieving phenomenon of Reiner-Stanton-White to prove Schur expansions due to Kraśkiewicz-Weyman related to *Thrall's problem*.
- The resulting argument is *remarkably simple and nearly bijective*. It is a rare example of the CSP being used *to prove other results*, rather than vice-versa.
- We then apply our approach to prove other results of Stembridge and Schocker.
- Guided by our experience, we suggest a new approach to Thrall's problem.

What is Thrall's problem?

Definition

Let...

- ► V be a finite-dimensional vector space over C;
- $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$ be the *tensor algebra of V*;
- ► L(V) be the free Lie algebra on V, namely the Lie subalgebra of T(V) generated by V;
- $\mathcal{L}_n(V) \coloneqq \mathcal{L}(V) \cap V^{\otimes n}$ be the *nth Lie module*;
- $\mathfrak{U}(\mathcal{L}(V))$ be the universal enveloping algebra of $\mathcal{L}(V)$; and
- Sym^m(M) be the *m*th symmetric power of a vector space M.

By an appropriate version of the Poincaré-Birkhoff-Witt Theorem,

 $T(V) \cong \mathcal{U}(\mathcal{L}(V)) \cong \bigoplus_{\lambda = 1^{m_1} 2^{m_2} \dots} \operatorname{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \operatorname{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$

as graded GL(V)-modules.

Definition (Thrall [Thr42]) The higher Lie module associated to $\lambda = 1^{m_1} 2^{m_2} \cdots$ is

$$\mathcal{L}_{\lambda}(V) \coloneqq \operatorname{\mathsf{Sym}}^{m_1}(\mathcal{L}_1(V)) \otimes \operatorname{\mathsf{Sym}}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

Thus we have a *canonical* GL(V)-module decomposition

$$T(V) \cong \oplus_{\lambda \in \operatorname{Par}} \mathcal{L}_{\lambda}(V).$$

Question (Thrall's Problem)

What are the irreducible decompositions of the $\mathcal{L}_{\lambda}(V)$?

 $\mathcal{L}_{\lambda}(V) \coloneqq \operatorname{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \operatorname{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$

- The Littlewood–Richardson rule reduces Thrall's problem to the rectangular case λ = (a^b) with b rows of length a.
- In the rectangular case,

$$\mathcal{L}_{(a^b)}(V) = \operatorname{Sym}^b \mathcal{L}_a(V)$$

In the one-row case,

$$\mathcal{L}_{(a)}(V) = \mathcal{L}_{a}(V).$$

Kraśkiewicz–Weyman [KW01] solved Thrall's problem *in the one-row case*. We next describe their answer.

Partitions

Definition

A partition λ of n is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge \cdots$ such that $\sum_i \lambda_i = n$. Partitions can be visualized by their Ferrers diagram

Theorem

(Young, early 1900's) The complex inequivalent irreducible representations S^{λ} of S_n are canonically indexed by partitions of n.

Standard tableaux

Definition

A standard Young tableau (SYT) of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with 1, 2, ..., n which increases along rows and decreases down columns.

$$T = \begin{bmatrix} 11 & 33 & 6 & 77 & 9 \\ 2 & 5 & 8 \\ 4 \end{bmatrix} \in SYT(\lambda)$$

Descent set: $\{1, 3, 7\}$. Major index: 1 + 3 + 7 = 11.

Definition

The *descent set* of $T \in SYT(\lambda)$ is the set

 $\mathsf{Des}(T) := \{1 \le i < n : i+1 \text{ is in a lower row of } T \text{ than } i\}.$

The major index of $T \in SYT(\lambda)$ is $maj(T) := \sum_{i \in Des(T)} i$.

Definition Let

$$a_{\lambda,r} \coloneqq \#\{T \in \mathsf{SYT}(\lambda) : \mathsf{maj}(T) \equiv_n r\}.$$

Theorem (Kraśkiewicz–Weyman [KW01]) The multiplicity of the GL(V)-irreducible V^{λ} in $\mathcal{L}_n(V)$ is $a_{\lambda,1}$.

Kraśkiewicz–Weyman's argument hinges on the following key formula:

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r)$$
(1)

for all $r \in \mathbb{Z}$, where:

$$\mathsf{SYT}(\lambda)^{\mathsf{maj}}(q) \coloneqq \sum_{T \in \mathsf{SYT}(\lambda)} q^{\mathsf{maj}(T)},$$

• ω_n is any primitive *n*th root of unity,

•
$$\chi^{\lambda}(\sigma)$$
 is the character of S^{λ} at σ , and

$$\bullet \ \sigma_n = (1 \ 2 \ \cdots \ n) \in S_n.$$

Their approach involves results of Lusztig and Stanley on coinvariant algebras and an intricate though beautiful argument involving ℓ -decomposable partitions. The key formula bears a striking resemblance to the *cyclic sieving phenomenon* of Reiner–Stanton–White, which we describe next.

Words

Definition

► A *word* is a sequence

$$w = w_1 w_2 \cdots w_n$$
 s.t. $w_i \in \mathbb{Z}_{>1}$.

- W_n is the set of words of length n.
- The *content* of w is the weak composition α = (α₁, α₂,...) where α_j = #{i : w_i = j}.
- W_{α} is the set of words of content α .

For example, $w = 412144 \in W_{(2,1,0,3)} \subset W_6$.

Major index on words

Definition (MacMahon, early 1900's) The *descent set* of $w \in W_n$ is

$$\mathsf{Des}(w) \coloneqq \{1 \le i \le n-1 : w_i > w_{i+1}\}.$$

The major index is

$$\mathsf{maj}(w) \coloneqq \sum_{i \in \mathsf{Des}(w)} i.$$

For example,

$$Des(412144) = Des(4.12.144) = \{1, 3\}$$

maj(412144) = 1 + 3 = 4.

Theorem (MacMahon [Mac]) The major index generating function on $W_{\alpha} \subset W_n$ is

$$\mathsf{W}^{\mathsf{maj}}_{\alpha}(q) \coloneqq \sum_{w \in \mathsf{W}_{\alpha}} q^{\mathsf{maj}(w)} = \frac{[n]_{q}!}{\prod_{i \ge 1} [\alpha_{i}]_{q}!} = \binom{n}{\alpha}_{q}$$

where $[n]_q := (1 - q^n)/(1 - q) = 1 + q + \dots + q^{n-1}$ and $[n]_q! := [n]_q[n-1]_q \dots [1]_q.$

Major index on words

$$\mathsf{W}^{\mathsf{maj}}_{\alpha}(q) = \binom{n}{\alpha}_{q}$$

We have $\binom{n}{\alpha}_{q=1} = \binom{n}{\alpha} = \# W_{\alpha}$. Exercise

Let ω_d be any primitive *d*th root of unity. If $d \mid n$,

$$\binom{n}{\alpha}_{q=\omega_d} = \begin{cases} \binom{n/d}{\alpha_1/d,\alpha_2/d,\dots} & \text{if } d \mid \alpha_1,\alpha_2,\dots\\ 0 & \text{otherwise.} \end{cases}$$

Question What does $\binom{n}{\alpha}_{q=\omega_d}$ count?

Major index on words

Definition

Let $\sigma_n := (12 \cdots n) \in S_n$ be the standard *n*-cycle. Let $C_n := \langle \sigma_n \rangle$, which acts on each $W_\alpha \subset W_n$ by rotation.

Exercise

If $\sigma \in C_n$ has order $d \mid n$, then

$$\begin{split} \# \mathsf{W}^{\sigma}_{\alpha} &\coloneqq \# \{ w \in \mathsf{W}_{\alpha} : \sigma(w) = w \} \\ &= \begin{cases} \binom{n/d}{\alpha_1/d, \alpha_2/d, \dots} & \text{if } d \mid \alpha_1, \alpha_2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Corollary

For all $\sigma \in C_n$ of order $d \mid n$,

$$W^{\mathrm{maj}}_{\alpha}(\omega_d) = \# W^{\sigma}_{\alpha}.$$

The cyclic sieving phenomenon

Definition (Reiner-Stanton-White [RSW04])

Let X be a finite set on which a cyclic group C of order n acts and suppose $X(q) \in \mathbb{Z}[q]$. The triple (X, C, X(q)) exhibits the cyclic sieving phenomenon (CSP) if for all elements $\sigma_d \in C$ of order d,

$$X(\omega_d) = \# X^{\sigma_d}.$$

Remark

- d = 1 gives X(1) = #X, so X(q) is a q-analogue of #X.
- #X^{σ_d} = Tr_{C{X}(σ_d), so the CSP says that evaluations of X(q) encode the isomorphism type of the C-action on X.
- ► X(q) is uniquely determined modulo qⁿ 1. If deg X(q) < n, the kth coefficient of X(q) is the number of elements of X whose stabilizer has order dividing k.</p>

The cyclic sieving phenomenon Theorem ([RSW04, Prop. 4.4])

The triple $(W_{\alpha}, C_n, W_{\alpha}^{maj}(q))$ exhibits the CSP. That is, maj is a "universal" cyclic sieving statistic on words W_n for the S_n -action in the following sense: Corollary ([BER11, Prop. 3.1])

Let W be a finite set of length n words closed under the S_n -action. Then, the triple

 $(W, C_n, W^{maj}(q))$

exhibits the CSP.

Corollary

By "changing basis" from Schur functions and irreducible characters to homogeneous symmetric functions and induced trivial characters, Kraśkiewicz–Weyman's key formula (1) holds:

 $\operatorname{SYT}(\lambda)^{\operatorname{maj}}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r).$

Schur–Weyl duality

To connect cyclic sieving to Thrall's problem, we require some standard GL(V)-representation theory.

Definition

The Schur character of a GL(V)-module E is

$$(\operatorname{ch} E)(x_1,\ldots,x_m) \coloneqq \operatorname{Tr}_E(\operatorname{diag}(x_1,\ldots,x_m)),$$

where $m = \dim(V)$.

Definition

Let M be an S_n -module. The *Schur–Weyl dual* of M is the GL(V)-module

$$\mathsf{E}(\mathsf{M}) \coloneqq \mathsf{V}^{\otimes n} \otimes_{\mathbb{C}S_n} \mathsf{M}.$$

Theorem (Schur–Weyl duality) For any S_n -module M,

 $\lim_{m\to\infty} \operatorname{ch} E(M) = \operatorname{ch}(M).$

Thrall's problem and necklaces

Definition

• A *necklace* is a C_n -orbit [w] of a word $w \in W_n$, e.g.

 $[221221] = \{221221, 122122, 212212\}.$

- [221] has trivial stabilizer so is *primitive*.
- [221221] is not primitive and has *frequency* 2 since it's made of two copies of a primitive word.

Thrall's problem and necklaces

Proposition (Klyachko [Kly74])

There is a weight space basis for $E(\exp(2\pi i/n})\uparrow_{C_n}^{S_n})$ indexed by primitive necklaces of length n words.

Theorem (Marshall Hall [Hal59, Lem. 11.2.1])

 \mathcal{L}_n also has a weight space basis indexed by primitive necklaces.

Corollary (Klyachko [Kly74])

The Schur–Weyl dual of $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$ is \mathcal{L}_n .

To apply cyclic sieving, we need generating functions over words, not primitive necklaces.

Thrall's problem and necklaces Definition Let

 $NFD_{n,r} := \{\underline{n}ecklaces of length n words with \underline{f}requency \underline{d}ividing r\}.$

Hence $NFD_{n,1}$ consists of primitive necklaces.

Proposition ([AS18a])

There is a weight space basis for $E(\exp(2\pi i r/n)\uparrow_{C_n}^{S_n})$ indexed by NFD_{*n*,*r*}.

Corollary

We have

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = \sum_{r=1}^{n} q^{r} \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}).$$

However, as r varies, the NFD_{n,r} are not disjoint.

Flex

To fix this, we use the following.

Definition ([AS18b])

The statistic flex: $W_n \to \mathbb{Z}_{\geq 0}$ is flex $(w) := \text{freq}(w) \cdot \text{lex}(w)$ where lex(w) is the position at which w appears in the lexicographic order of its rotations, starting at 1.

Example

 $flex(221221) = 2 \cdot 3 = 6$ since 221221 is the concatenation of 2 copies of the primitive word 221 and 221221 is third in lexicographic order amongst its 3 cyclic rotations.

Lemma

We have

$$\sum_{r=1}^{n} q^r \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}) = \operatorname{W}_{n}^{\operatorname{cont};\operatorname{flex}}(\mathbf{x};q).$$

Flex is a *"universal" cyclic sieving statistic* on words W_n for C_n -actions in the following sense:

Lemma ([AS18b])

Let W be a finite set of length n words closed under the C_n -action, where C_n acts by cyclic rotations. Then, the triple $(W, C_n, W^{\text{flex}}(q))$ exhibits the CSP.

Corollary

We have

$$\mathsf{W}^{\mathsf{cont};\mathsf{flex}}_n(q) = \mathsf{W}^{\mathsf{cont};\mathsf{maj}_n}_n(q)$$

where $1 \leq \operatorname{maj}_n \leq n$ is maj modulo n.

Proving Kraśkiewicz–Weyman's theorem

We finally have the following *remarkably direct, largely bijective proof* of Kraśkiewicz–Weyman's result using cyclic sieving.

- 1. Using *Schur–Weyl duality* and *Hall's basis*, ch \mathcal{L}_n can be replaced by ch exp $(2\pi i/n)\uparrow_{C_n}^{S_n}$.
- 2. Using the generalized Klyachko basis and flex,

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = W_{n}^{\operatorname{cont;flex}}(\mathbf{x}; q).$$

- 3. Using *universal cyclic sieving* on words for S_n or C_n -actions, $W_n^{\text{cont;flex}}(\mathbf{x}; q) = W_n^{\text{cont;maj}_n}(\mathbf{x}; q).$
- 4. Using the *RSK algorithm* $w \mapsto (P, Q)$ where Des(w) = Des(Q),

$$\mathbb{W}_n^{ ext{cont}; ext{maj}_n}(\mathbf{x};q) = \sum_{\substack{\lambda \vdash n \ r \in [n]}} a_{\lambda,r} q^r s_\lambda(\mathbf{x}).$$

Kraśkiewicz-Weyman open problems

There are multiple published proofs of Kraśkiewicz–Weyman's theorem. However, none of them give a bijective explanation for the following symmetry:

Corollary

Let $\lambda \vdash n$. Then $\#\{T \in SYT(\lambda) : maj(T) \equiv_n r\}$ depends only on λ and gcd(n, r).

Open Problem

Find a *bijective proof* of the above symmetry.

Open Problem

Find a content-preserving bijection $\Phi: W_n \to W_n$ such that $\operatorname{maj}_n(w) = \operatorname{flex}(\Phi(w)).$

Such a bijection Φ would give a bijective proof of the identity

$$\sum_{\lambda \vdash n} a_{\lambda,r} s_{\lambda}(\mathbf{x}) = \sum_{\lambda \vdash n} a_{\lambda, \gcd(n,r)} s_{\lambda}(\mathbf{x}).$$

In [AS18b], we prove a *refinement* of the $(W_{\alpha}, C_n, W_{\alpha}^{maj}(q))$ CSP involving the *cyclic descent type* of a word.

Question

Is there a refinement of Kraśkiewicz–Weyman's Schur expansion *involving cyclic descent types*?

The recent work of Adin, Elizalde, Huang, Reiner, Roichman on cyclic descent sets for standard tableaux may be relevant.

Cyclic group branching rules

Stembridge generalized Kraśkiewicz–Weyman's result to describe all branching rules for any $\langle \sigma \rangle \hookrightarrow S_n$ where σ is of cycle type ν and order ℓ :

Theorem (Stembridge [Ste89]) $\sum_{r=1}^{\ell} q^{r} \operatorname{ch}(\exp(2\pi i r/\ell) \uparrow_{\langle \sigma \rangle}^{S_{n}}) = \sum_{\substack{\lambda \vdash n \\ T \in \operatorname{SYT}(\lambda)}} q^{\operatorname{maj}_{\nu}(T)} s_{\lambda}(\mathbf{x})$

where maj_{ν} is a generalization of maj_{n} .

We give a cyclic sieving-based proof of Stembridge's result. The first step is a natural generalization of Klyachko's basis:

Proposition

$$\operatorname{ch} \exp(2\pi i r/\ell) \uparrow_{\langle \sigma \rangle}^{S_n} = \operatorname{OFD}_{n,r}^{\operatorname{cont}}(\mathbf{x})$$

where $OFD_{n,r}$ is the set of $\langle \sigma \rangle$ -orbits with frequency (stabilizer order) dividing r. See the paper for more.

Higher Lie modules

Recall that
$$\mathcal{L}_{(a^b)} = \operatorname{Sym}^b \mathcal{L}_a$$
. Consequently,

 $\operatorname{ch} \mathcal{L}_{(a^b)} = h_b[\mathcal{L}_a].$

Thus Thrall's problem is an instance of a *plethysm problem*. Such problems are notoriously difficult.

The preceding arguments and results strongly suggest the need to consider Thrall's problem in the larger context of *general branching rules*.

Higher Lie modules

One may show that $\mathcal{L}_{(a^b)}$ is the Schur–Weyl dual of a certain induced one-dimensional representation $\chi^{r,1} \uparrow_{C_a \wr S_b}^{S_{ab}}$ of the *wreath product* $C_a \wr S_b$. Here $C_a \wr S_b$ can be thought of as the subgroup of permutations on *ab* letters which permute the *b* size-*a* intervals in [ab] amongst themselves and cyclically rotate each size-*a* interval independently.

Schocker [Sch03] gave a formula for the Schur expansion of ch $\mathcal{L}_{(a^b)}$, though it involves many divisions and subtractions in general. We generalized Schocker's result to all induced *one-dimensional* representations of $C_a \wr S_b$ using cyclic sieving.

Higher Lie modules

Theorem (See [Sch03, Thm. 3.1])
For all
$$a, b \ge 1$$
 and $r = 1, ..., a$, we have
 $\operatorname{ch} \mathcal{L}_{(a^{b})}^{r,1} = \sum_{\lambda \vdash ab} \left(\sum_{\nu \vdash b} \frac{1}{z_{\nu}} \sum_{\tau \mid r * \nu} \mu_{\tau}(\nu, r * \nu) \mathbf{a}_{\lambda,\tau}^{a*\nu} \right) s_{\lambda}(\mathbf{x}) \quad \text{and}$
 $\operatorname{ch} \mathcal{L}_{(a^{b})}^{r,\epsilon} = \sum_{\lambda \vdash ab} \left(\sum_{\nu \vdash b} \frac{(-1)^{b-\ell(\nu)}}{z_{\nu}} \sum_{\tau \mid r * \nu} \mu_{\tau}(\nu, r * \nu) \mathbf{a}_{\lambda,\tau}^{a*\nu} \right) s_{\lambda}(\mathbf{x}),$

where $\operatorname{maj}_{a*\nu}$ is a variation on maj,

$$\mathbf{a}_{\lambda,\tau}^{\boldsymbol{a}*\boldsymbol{\nu}} \coloneqq \#\{Q \in \mathsf{SYT}(\lambda) : \mathsf{maj}_{\boldsymbol{a}*\boldsymbol{\nu}}(Q) = \tau\},\$$

and $\mu_f(d, e)$ is a generalization of the classical Möbius function. In our approach, the *subtractions and divisions* arise from the underlying combinatorics using *Möbius inversion and Burnside's lemma*, respectively.

Our generalization of Schocker's formula involves considering only the one-dimensional representations of $C_a \wr S_b$, which may explain its failure to be cancellation-free.

The earlier statistics flex, maj_n, and maj_ν gave *monomial* expansions of the branching rules in question as generating functions on words. We have identified the monomial expansion for $C_a \wr S_b \hookrightarrow S_{ab}$ as a statistic generating function as follows.

Theorem

Fix integers $a, b \ge 1$. We have

$$\begin{split} \sum_{\underline{\lambda}} \dim S^{\underline{\lambda}} \cdot \mathsf{ch} \left(S^{\underline{\lambda}} \uparrow^{S_{ab}}_{C_a \wr S_b} \right) q^{\underline{\lambda}} &= \mathsf{W}^{\mathsf{cont},\mathsf{flex}^b_a}_{ab}(\mathbf{x};q) \\ &= \mathsf{W}^{\mathsf{cont},\mathsf{maj}^b_a}_{ab}(\mathbf{x};q) \end{split}$$

where the sum is over all a-tuples $\underline{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(a)})$ of partitions with $\sum_{r=1}^{a} |\lambda^{(r)}| = b$ and the $q^{\underline{\lambda}}$ are independent indeterminates.

The statistics $flex_a^b$ and maj_a^b are somewhat involved. For $flex_a^b$:

- 1. Write $w \in W_{ab}$ in the form $w = w^1 \cdots w^b$ where $w_j \in W_a$.
- Let w^(r) denote the subword of w whose letters are those w^j ∈ W_a such that flex(w^j) = r.
- 3. Totally order W_a lexicographically, so that RSK is well-defined for words with letters from W_a .
- 4. Set

$$\mathsf{flex}^b_{\mathsf{a}}(w) \coloneqq (\mathsf{sh}(w^{(1)}), \dots, \mathsf{sh}(w^{(a)}))$$

where sh denotes the shape under RSK.

For maj_a^b , use maj_a instead of flex in step (2).

Previously, we were able to simply use RSK to go from the *monomial to the Schur basis*, since maj_{ν} depends only on Q(w). However, flex^{*b*}_{*a*} and maj^{*b*}_{*a*} do not have the corresponding property.

Open Problem

Fix $a, b \ge 1$. Find a statistic

 $\operatorname{mash}_{a}^{b}$: $W_{ab} \rightarrow \{a \text{-tuples of partitions with total size } b\}$

with the following properties.

(i) For all α ⊨ ab, maj^b_a (or equivalently flex^b_a) and mash^b_a are equidistributed on W_α.

(ii) If
$$v, w \in W_{ab}$$
 satisfy $Q(v) = Q(w)$, then $\operatorname{mash}_a^b(v) = \operatorname{mash}_a^b(w)$.

Finding such a statistic mash^b_a would determine all branching rules for $C_a \wr S_b \hookrightarrow S_{ab}$, in particularly solving Thrall's problem, as follows.

Corollary

Suppose mash^b_a satisfies Properties (i) and (ii). Then

$$\mathsf{ch}(S^{\underline{\lambda}} \uparrow^{S_{ab}}_{C_a \wr S_b}) = \sum_{\nu \vdash ab} \frac{\#\{Q \in \mathsf{SYT}(\nu) : \mathsf{mash}^b_a(Q) = \underline{\lambda}\}}{\mathsf{dim}(S^{\underline{\lambda}})} s_{\nu}(\mathbf{x}),$$

where $\operatorname{mash}_a^b(Q) := \operatorname{mash}_a^b(w)$ for any $w \in W_{ab}$ with Q(w) = Q.

When a = 1 and b = n, $\operatorname{maj}_{1}^{n}(w)$ essentially reduces to $\operatorname{sh}(w)$, the shape of w under RSK. When a = n and b = 1, $\operatorname{maj}_{n}^{1}(w)$ essentially reduces to $\operatorname{maj}_{n}(w)$. Both of these satisfy (i) and (ii). In this sense $\operatorname{mash}_{a}^{b}$, interpolates between the major index maj_{n} and the shape under RSK, hence the name.

Question

Could a useful notion of *"group sieving"* for the wreath products $C_a \wr S_b$ be missing?

THANKS!

References I

Connor Ahlbach and Joshua P. Swanson. Cyclic sieving, necklaces, and branching rules related to Thrall's problem.

Electron. J. Combin., 25(4):Paper 4.42, 38, 2018.

- Connor Ahlbach and Joshua P. Swanson. Refined cyclic sieving on words for the major index statistic. European Journal of Combinatorics, 73:37 – 60, 2018.
- Andrew Berget, Sen-Peng Eu, and Victor Reiner. Constructions for cyclic sieving phenomena. *SIAM J. Discrete Math.*, 25(3):1297–1314, 2011.

Marshall Hall, Jr.

The Theory of Groups. The Macmillan Co., New York, N.Y., 1959.

References II

A. A. Klyachko.

Lie elements in the tensor algebra. Siberian Mathematical Journal, 15(6):914-920, 1974.

Witold Kraśkiewicz and Jerzy Weyman. Algebra of coinvariants and the action of a Coxeter element. Bayreuth. Math. Schr., (63):265-284, 2001.

P. A. MacMahon.

Two applications of general theorems in combinatory analysis: (1) to the theory of inversions of permutations; (2) to the ascertainment of the numbers of terms in the development of a determinant which has amongst its elements an arbitrary number of zeros.

Proc. London Math. Soc., S2-15(1):314.

References III

Victor Reiner, Dennis Stanton, and Dennis White. The cyclic sieving phenomenon. J. Combin. Theory Ser. A, 108(1):17-50, 2004.

Manfred Schocker.

Multiplicities of higher Lie characters.

J. Aust. Math. Soc., 75(1):9–21, 2003.

John R. Stembridge.

On the eigenvalues of representations of reflection groups and wreath products.

Pacific J. Math., 140(2):353-396, 1989.

R. M. Thrall.

On symmetrized Kronecker powers and the structure of the free Lie ring.

Amer. J. Math., 64:371-388, 1942.