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Outline

This talk contains stuff on
> partitions and tableaux
> the Plancherel (mostly) and uniform measures on Young diagrams
> main results on skew Young diagrams
» the beyond

and a few surprises.



Partitions

Figure: Partition (Young diagram) A = (2, 2, 2, 1, 1) (Frobenius coordinates (1, 0|4, 1)) in English, French and Russian notation, with
associated Maya diagram (particle-hole representation). Size || = 8, length £()\) = 5.
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Figure: Skew partitions (Young diagrams) (4, 3, 2, 1)/(2, 1) (but also (5, 4, 3,2, 1)/(5,2,1), . . . ) and (4, 4,2, 1)/(2, 2) (but also
(6,4,4,2,1)/(6,2,2),...)



Counting tableaux

A standard (semi-standard) Young tableau SYT (SSYT) is a filling of a (possibly skew)
Young diagram with numbers 1,2, ... strictly increasing down columns and rows (rows
weakly increasing for semi-standard).
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dim A := number of SYTs of shape A,

dim) := number of SSYTs of shape X\ with entries from 1...n

and similarly for dim A\/p, cTi\a)\/u.



Two natural measures on partitions

» On partitions of n (|A| := >_ X\; = n): Plancherel vs. uniform

(dim \)? 1

Prob(\) = ~—— 21 . Prob(\)=—————
rob() n! ve rob(}) #{partitions of n}

» On all partitions: poissonized Plancherel vs. (grand canonical) uniform

2 im \)? .
Prob(\) = e~ ¢ e2p‘|% Vs. Prob()) = ul?l 1:{(1 —u')

with € > 0,1 > u > 0 parameters.
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Ulam’'s problem and Hammersley last passage percolation |

PPP(€?) in the unit square.



Ulam’'s problem and Hammersley last passage percolation |l

Quantity of interest: L = longest up-right path from (0,0) to (1,1) (= 4 here).



Ulam's problem and Hammersley last passage percolation 1l
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L is the length (any) of the longest increasing subsequence in a random permutation of

Sy with N ~ Poisson(e?).



The poissonized Plancherel measure

By the Robinson—Schensted—Knuth correspondence and Schensted’s theorem, L = A; in
distribution where A has the poissonized Plancherel measure:

—& 2 (dim A)?
(IA1H?

Prob(\) = e

2
e sx(ple)sx(ple)

(s is a Schur function, ple the Plancherel specialization sending p1 — ¢, p; — 0,7 > 2)

Interest: what happens to A1 as € — co? (large PPP, large random permutation, ...)



Limit shape

A Plancherel-random representation (partition!) of Sy304 (Prob(\) = (dim A)2/n!,
n = 2304), at IHP. The limit shape should be obvious (VerKer, LogShe 1977).
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Limit shapes: Plancherel vs uniform

Random Plancherel (left) and uniform (right) partitions of N = 10000. The scale is
different: v/N for Plancherel, \mlog N for uniform.



The Baik—Deift—Johansson theorem and Tracy—Widom

Theorem (BaiDeiJoh 1999)

If X is distributed as poissonized Plancherel, we have:

. A1 — 2€ .
lim Prob ( 161/3 < s) = Fgug(s) := det(1 — Ai) 2(; o)

€—00

with
o0
Aix(x,y) = / Ai(x + s)Ai(y + s)ds
0
and Ai the Airy function (solution of y' = xy decaying at o).

Fcug is the Tracy-Widom GUE distribution. It is by (original) construction the extreme
distribution of the largest eigenvalue of a random hermitian matrix with iid standard
Gaussian entries as the size of the matrix goes to infinity.



The Erdés—Lehner theorem and Gumbel

Theorem (ErdLeh 1941)

For the uniform measure Prob()\) o< ul* we have:

log(1 — -
lim Prob ()\1 < — og( u) + § ) X 5.
u—1— log u | log ul
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The finite temperature Plancherel measure

On pairs of partitions ;x C A D p consider the measure (Bor 06)

[A]—pl dim?(\/u)
Prob(p, A ocul“l-g—
bl ) (Al

with u = e~ #, 8 = inverse temperature.

» u = 0 yields the poissonized Plancherel measure

> ¢ = 0 yields the (grand canonical) uniform measure



What is in a part?

PPP(u'é)

PPP(u’)

PPP(u%?)

PPP(ué?)

PPP(e)

With L the longest up-right path in this cylindric geometry, in distribution, Schensted’s
theorem states that

M =L+ kK1

where & is a uniform partition Prob(x) o ul®l independent of everything else.



The finite temperature Plancherel measure |l

Theorem (B/Bouttier 2019)
Let M= £ — o0 and u = exp(—aM~1/3) 1. Then

1—u

_ AL —2M _ ,
Mlinoo Prob (W < s) = F%(s) := det(1 — Ai”") 25 )

with

oo eas
A% (x, ) ;:/ o A+ ANy + 5)ds

the finite temperature Airy kernel.



A word on the finite temperature Airy kernel

Ai® is Johansson's (2007) Airy kernel in finite temperature (also appearing as the KPZ
crossover kernel: SasSpol0 and AmiCorQuall, in random directed polymers
BorCorFerll, cylindric OU processes LeDMajSch15):

(oo} eOtS
Ai%(x,y) :/ mAi(x-{—s)Ai(y—i—s)ds

and interpolates between the Airy kernel and a diagonal exponential kernel:
lim Aia(xvy) = Ai2(X7y)7
a—r 00

1 X 1 y 1
lim ZAi® (2 — = log(4ma?), T — — log(4ma?) | = e %6y, .
a|—>0+ « ' (a 2a g(4ma’) a 2« g(4ma’) i

If F*(s), Foug(s), and G(s) are the Fredholm determinants on (s, 00) of Ai®, Air and
e *x,y, then (Joh 2007)

—s

[e3

H « — H @ S
IIj?)OF (s) = Faur(s), lim F (

a—0+ «

— i Iog(47roz3)) =G(s)=e"¢

It appeared in seemingly two different situations:
» random matrix models on the cylinder/in finite temperature (Joh, LeDMajSch, ...)
» the KPZ equation with wedge I.C. at finite time (SasSpo, AmiCorQua, ...)



Three limiting regimes for edge fluctuations

Theorem (B/Bouttier 2019)

With u=e~" — 1 as r — 0+ and € — oo (or finite) we have:
> er? — 0+ leads to Gumbel behavior; thermal fluctuations win
> er? — oo leads to Tracy—Widom; quantum fluctuations win

> er? — a € (0,00) leads to finite temperature Tracy-Widom F; equilibrium
between thermal and quantum
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The stuff that's in the FPSAC abstract

Consider the following measures (oc = number of odd columns, n letters for dfl\r;)

oc oc €‘>\/‘u'| dim(A
M7 (1, A) o a9 25 ylul Ww

el M uIHIM Yl dim(A /1) dim(X/v)
A/l (A v 7
M7 (1, M) oc a2 a2 L ylil L g /kl . dim(A/p),
M7 (1, A, v) o aic(ﬂ)agcm culely vl ARV im0/ p)dim (A /).

M7 S (A, v) o a;c(u)agc(k) Culnlyvl

They all interpolate between Plancherel-type (u = 0) and uniform (€, ¢ = 0) measures.



What is in a part? (A1 = L+ k1 via
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Figure: Longest up-right path in orange of length L = 199 (left) and L = 130 (right). M/\(u, X, v) (left) and M (e, A) (right);
Xj = yj = q; case a] = ap = 0 (for generic, multiply the parameters in the boundary triangles by aj and ap for the two different

boundaries; « is uniform with prob. o< (uv)ln‘ (left) and oc ulkl (right).



Main theorem: edge limits (SYT case)

Theorem (B/Bouttier/Nejjar/Vuleti¢ FPSAC 2019)
Fix n,aj, i = 1,2 positive reals. Let M := ﬁ — oo and set

u=v=exp(—nM~1/3), a=u/" =12

all going to 1 as M — co. (In particular, e ~ M?/3 — cc.) We have:

—2M 1 M1L/3 _ _
Mlim M <)\1Ml/3 <s+ —log ) = Flio,02i(g),
A1 —2M 1 M1/3 ) _
lim M/(\ A <s+4+ — |Og — F2,O¢1,az,7l(s)
M— 00 M1/3 2n 2n

with the distributions F " explicit Fredholm pfaffians.

Remark: This theorem generalizes celebrated results of Baik—Rains (2000) on longest
increasing subsequences in symmetrized permutations, as well as the classical
Baik—Deift—Johansson theorem.



Main theorem: edge limits (SSYT case on n letters)

Theorem (B/Bouttier/Nejjar/Vuleti¢ FPSAC 2019)

Fix n,aj, i = 1,2 positive reals. As n — oo (n a positive integer), let
u=v= exp(fnn_1/3), 2 =u/Mm, =12

all going to 1 and set ¢ =1 — u? — 0. We have:

_ A — 1 1/3 . .
lim M~ <13Xn <s+ —log ) = Fliot,az2in(g),

n—oo nl/ n n
s (M 13 or
lim M~ 117)(" <s+4+ — Iogn— = F2va1»0<2,n(s)
n— oo nl/3 2n 2n

20
— u
where x =2q3",5, g



Limits to Tracy—Widom

Theorem (B/Bouttier/Nejjar/Vuleti¢ FPSAC 2019)
We have:

i Lag,azn — F9(s: i 2a1,02;m —
nll_)mooF (s) = F9(s; a2), 7]ILmooF (s) = Feur(s)

where Fqug is the Tracy—Widom GUE distribution and FY(s; o) is the Baik—Rains
Tracy—Widom GOE/GSE crossover

FP(s;0) = Faor(s),  FP(s;o0) = Fasg(s).

Remark: as 7 — 0, the distributions should converge to Gumbel in the appropriate (so
far unknown) scaling.



Defition of distribution functions

The distributions are Fredholm pfaffians FKia1:22i%(s) = pf (J — Ak:awzm)L2 (H log 2 oo)
k-
for specific 2 x 2 matrix kernels A. For example:
1 w sin LC;“’) 3
a1 2Ny // ( ) 1)(07( )(w) : "(Czw) ET7><CJrT*ywd<wY
sin T
- r(Ctw
APGTOR () = // (7 1- 7> o) Mef B
YD (@) sin "(42;“) 2n
= — Ay TR,
Liag,o e hnd 1 i M ¢ +x¢ o3 +yw d¢
o, ¢ w — - e dew
"2 ) // (1 ! n) 7(1)(4)7(1)@) sin 7(““’) ’ ’ an?

— sgn(x — y)
1,91=¢ ar—¢
I'(2+ P ER T .

_dcdw (1))
where dc = G O S ey
2 2n  2n

contours are certain top-to-bottom vertical lines close enough to 0.

c,...)=Tr@rpr()- - -and where the




When aq

= ap = 0 (no boundary parameters) things simplify

in T(C—w) 3
w )\ sin o0 L,X<+L,yu dew
(x,y) = 1- 21— — 3 3 Cw

llxy // n)sin (gj,“’)e 4

i T(C+w) 3
1;n [ ¢ w) sy C —x¢— +yw dew 1n
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12009 // Y n) ; w(gﬂ;)e o 210 %)

n
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Proof

pass to the grand canonical ensemble by introducing an independent (even) charge
2d from Prob(d) tzd(uv)2d2 shifting every part in every partition

rewrite measures in terms of skew Schur functions, for example

M/\(:U'? AV, d) & t2d(uv)2d2 . ai‘:(u)agco\) . U|H| V‘V‘ . s)\/p,(q7 IR q)s)\/u(qv R q)

ext
rewrite in terms of lattice (gloc free) fermions and use new Wick lemma to obtain
pfaffian correlations for the point process
steepest descent analysis of correlation kernel

remove charge at the end
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Conclusion

Moral of the story: natural combinatorial measures on integer partitions lead to
interesting asymptotic probabilistic behavior.

Future directions:
» Universality of the limiting distributions
> Connections to integrable hierarchies (i.e. the universal character hierarchy)

> Relation to (recent) work on asymptotics of dim A/

\{

Connections to (asymptotic) representation theory (the Okounkov—Olshanski
formula for dim A/p)
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