Semistable reduction in characteristic 0

Gaku Liu

Max Planck Institute for Mathematics in the Sciences, Leipzig

Joint work with Karim Adiprasito and Michael Temkin

FPSAC 2019

(ロ)、(型)、(E)、(E)、 E) の(の)

The KMW theorem

A *lattice polytope* is a polytope in \mathbb{R}^d with vertices in \mathbb{Z}^d .

A unimodular triangulation is a triangulation of a lattice polytope into lattice simplices all of whose volumes are 1/d!. (Equivalently, the edge vectors of each simplex generate \mathbb{Z}^d as a lattice.)

In general, lattice polytopes may not have unimodular triangulations when $d \ge 3$. However, we have the following celebrated result of Knudsen, Mumford, Waterman:

Theorem (KMW 1973)

For any lattice polytope P, there is a positive integer c such that cP has a unimodular triangulation.

Unimodular triangulations

Is there a constant c_d such that for all *d*-dimensional lattice polytopes *P*, $c_d P$ has a unimodular triangulation?

Given a lattice polytope P, is there a constant c_0 such that cP has a unimodular triangulation for all $c \ge c_0$?

Do parallelepipeds have unimodular triangulations?

Do smooth polytopes have unimodular triangulations?

What is semistable reduction? (KKMS)

Resolution of singularities is a classic problem in algebraic geometry where one tries to replace a variety X with a related variety X' that is non-singular.

For toric varieties, this corresponds to subdividing cones of the corresponding fan into smooth cones.

Semistable reduction is a relative analogue of this problem, where one tries to replace a family of varieties $f : X \to B$ with a related family $f' : X' \to B'$ which is "as smooth as possible".

- ► The most well-known appearance of the problem is Kempf, Knudsen, Mumford, Saint-Donat (1973), where a strong version is proven for dim B = 1 and characteristic 0.
- The core of the proof is the aformentioned KMW theorem on unimodular triangulations.

What is semistable reduction? (Abromovich-Karu)

A "best possible" version of semistable reduction in characteristic 0 for all $\dim(B)$ was proposed by Abromovich and Karu (2000).

They proved a weak version of their conjecture, and Karu (2000) proved the conjecture for $\dim(X) - \dim(B) \le 3$.

They reduce the problem to a combinatorial problem that generalizes the KKMS result on unimodular triangulations. Here we restate and solve the combinatorial problem.

Maps of polytopes

Given two lattice polytopes $P \subset \mathbb{R}^m$ and $Q \subset \mathbb{R}^n$, a *map* between P and Q is a homomorphism $f : \mathbb{Z}^m \to \mathbb{Z}^n$, extended linearly to $f : \mathbb{R}^m \to \mathbb{R}^n$, such that $f(P) \subset Q$.

If $f : \mathbb{Z}^m \to \mathbb{Z}^n$ is surjective and f(P) = Q, then f is a *projection* of polytopes.

Theorem (Adiprasito-L-Temkin)

Given a projection of polytopes $f : P \to Q$, where Q is a unimodular simplex, there exists a positive integer c and regular unimodular triangulations X and Y of cP and cQ, respectively, such that f projects every simplex of X onto a simplex of Y.

The case where Q is a point is the KMW theorem.

Cayley polytopes

A Cayley polytope is a polytope P along with a projection $P \to \Delta$, where Δ is a simplex, such that every vertex of P maps to a vertex of Δ .

Alternatively, a Cayley polytope is a polytope isomorphic to

$$\operatorname{conv}\left(P_1 \times \{e_1\}, P_2 \times \{e_2\}, \ldots, P_n \times \{e_n\}\right)$$

where $P_1, \ldots, P_n \subset \mathbb{R}^d$ are polytopes and $\{e_1, \ldots, e_n\}$ are the vertices of an (n-1)-simplex.

We write the above polytope as $C(P_1, \ldots, P_n)$, and call this the *Cayley sum* of P_1, \ldots, P_n .

Polysimplices

A *polysimplex* is a polytope of the form $\sum \sigma_i$, where $\{\sigma_i\}$ is a set of affinely independent simplices and the sum is Minkowski sum.

In this talk we will deal with Cayley polytopes of the form $C(\Sigma_1, \ldots, \Sigma_m)$, where the Σ_i are polysimplices.

Remark: A polysimplex can also be rewritten as a Cayley polytope of this form.

Main lemma

Lemma

Let $\{\sigma_j\}_{j=1}^n$ be a set of affinely independent simplices, and let A be an $m \times n$ matrix of nonnegative integers. Then

$$\mathcal{C}\left(\sum_{j=1}^{n}A_{1j}\sigma_{j},\sum_{j=1}^{n}A_{2j}\sigma_{j},\ldots,\sum_{j=1}^{n}A_{mj}\sigma_{j}\right)$$

has a triangulation where each simplex has the same normalized volume as $\sigma := C(\sigma_1, \ldots, \sigma_n)$. Moreover, suppose σ is not unimodular, $A_{ij} = 0$ or $A_{ij} \ge \dim \sigma_j$ for all i, j, and

support
$$A_1 \supseteq$$
 support $A_2 \supseteq \cdots \supseteq$ support A_m ,

where A_i denotes the *i*-th row of A. Then there is a triangulation where each simplex has normalized volume less than that of σ .

$\mathsf{Lemma} \implies \mathsf{Theorem}$

Theorem (Adiprasito-L-Temkin)

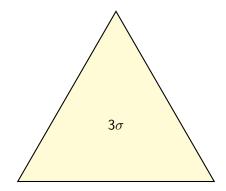
Given a projection of polytopes $f : P \to Q$, where Q is a unimodular simplex, there exists a positive integer c and regular unimodular triangulations X and Y of cP and cQ, respectively, such that f projects every simplex of X onto a simplex of Y.

Proof.

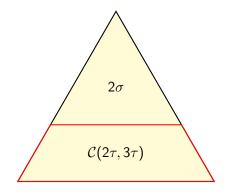
By triangulating P, we can assume P is a simplex. Let $\{e_1, \ldots, e_n\}$ be the vertices of Q, and $\sigma_i = f^{-1}(e_i)$. Then $P = C(\sigma_1, \ldots, \sigma_n)$.

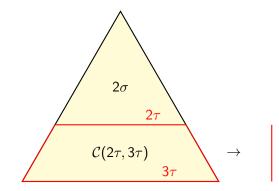
For $c \ge \dim Q$, construct a unimodular triangulation of cQ so that for every simplex τ of the triangulation, the vertices of τ can be ordered v_1, \ldots, v_n so that if v_i is contained in a face of cQ, then v_{i+1}, \ldots, v_n are also contained in that face.

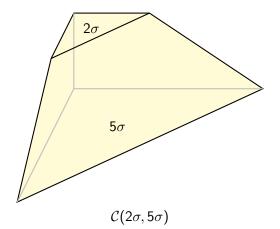
Then $f^{-1}(\tau)$ is a Cayley polytope satisfying the conditions of the Lemma, so we can triangulate it with simplices of volume less than P. Repeat with the simplices of this triangulation.



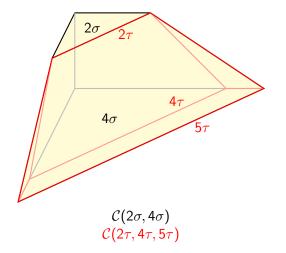
▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○







◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Main lemma

Lemma

Let $\{\sigma_j\}_{j=1}^n$ be a set of affinely independent simplices, and let A be an $m \times n$ matrix of nonnegative integers. Then

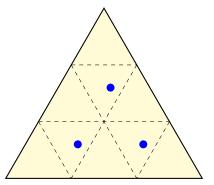
$$\mathcal{C}\left(\sum_{j=1}^{n}A_{1j}\sigma_{j},\sum_{j=1}^{n}A_{2j}\sigma_{j},\ldots,\sum_{j=1}^{n}A_{mj}\sigma_{j}\right)$$

has a triangulation where each simplex has the same normalized volume as $\sigma := C(\sigma_1, \ldots, \sigma_n)$. Moreover, suppose σ is not unimodular, $A_{ij} = 0$ or $A_{ij} \ge \dim \sigma_j$ for all i, j, and

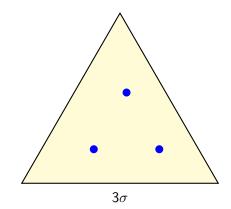
support
$$A_1 \supseteq$$
 support $A_2 \supseteq \cdots \supseteq$ support A_m ,

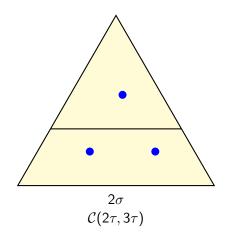
where A_i denotes the *i*-th row of A. Then there is a triangulation where each simplex has normalized volume less than that of σ .

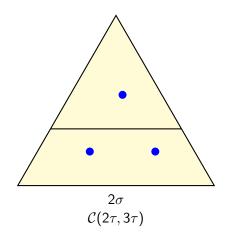
Given a full-dimensional lattice polysimplex $P \subset \mathbb{Z}^d$, let L_P denote the lattice generated by its edges. A nonzero element of \mathbb{Z}^d/L_P is called a *Waterman point* or *box point* of *P*.

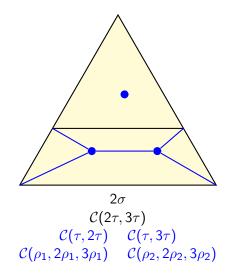


Representatives of a single box point of σ in contained in 3σ .

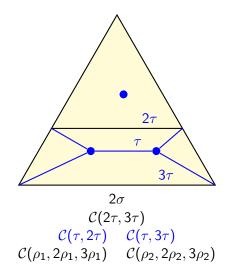




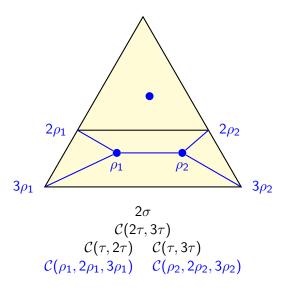


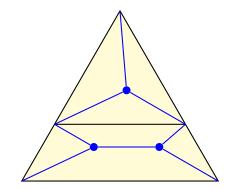


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

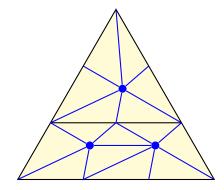


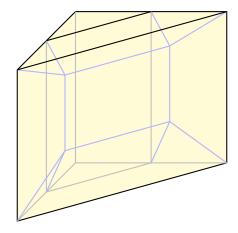
◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで





 $\mathcal{C}(\mathsf{pt},\mathsf{face})$





◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

A note on functoriality

To guarantee that subdivisions of smaller pieces glue together properly, we want to prove that our construction is *functorial*. In other words, our construction should be a rule that assigns to each polytope $P = C(\Sigma_1, ..., \Sigma_m)$ a triangulation T(P) of P, so that if F is a face of P, then the restriction of T(P) to F is T(F).

We need to assume that all polytopes have an ordering on their vertices, and be consistent with this ordering throughout.

For the proof of Part 2 of the lemma, we also need to prove certain subdivision steps are confluent with each other—we use the diamond lemma to prove this.

Thank you!