Spanning line configurations

Brendan Pawlowski (joint with Brendon Rhoades)

University of Southern California

July 3, 2019

Coinvariant algebras

Type A_{n-1} coinvariant algebra:

$$R_n := \mathbb{Z}[\mathbf{x}]/(e_1,\ldots,e_n),$$

 e_d = sum of degree d squarefree monomials in $\mathbf{x} := \{x_1, \ldots, x_n\}$.

- ► R_n is a free Z-module of rank n!
- As S_n -modules, $R_n \otimes \mathbb{Q} \simeq \mathbb{Q}[S_n]$.
- ► R_n ≃ H*(Fl(n)), the integral cohomology ring of the complete flag variety Fl(n).
- ▶ Basis of Schubert polynomials coming from H*(Fl(n), Z) picture.

Generalized coinvariant algebras

Haglund, Rhoades, and Shimozono: for $1 \le k \le n$, define

$$R_{n,k} := \mathbb{Z}[\mathbf{x}]/(x_1^k, \ldots, x_n^k, e_{n-k+1}, \ldots, e_n).$$

Example

R_{n,n} = ℤ[**x**]/(*e*₁,...,*e_n*, *x*ⁿ₁,...,*xⁿ_n*) = *R_n* free of rank *n*!.
R_n 1 = ℤ[**x**]/(*e_n*, *x*¹₁,...,*x¹_n*) = ℤ free of rank 1.

Let $OSP_{n,k} := \{ \text{partitions of } \{1, \dots, n \} \text{ into } k \text{ ordered blocks} \}.$

- $R_{n,k}$ is free of rank $\#OSP_{n,k}$.
- As S_n -modules, $R_{n,k} \otimes \mathbb{Q} \simeq \mathbb{Q}[\mathcal{OSP}_{n,k}]$.

- ▶ Haglund, Rhoades, and Shimozono give several bases of R_{n,k}, but not a Schubert-like basis.
- Is $R_{n,k} \simeq H^*(X)$ for some nice X?
- *R_{n,k}* isn't usually rank-symmetric, so such an X can't be a compact smooth manifold!

Why $H^*(Fl(n)) \simeq R_n$?

Γ

Recall FI(n) is the space of chains of linear subspaces

$$F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_n = \mathbb{C}^n.$$

Define $X_n = \{(\ell_1, \dots, \ell_n) \in (\mathbb{P}^{n-1})^n : \ell_1, \dots, \ell_n \text{ span } \mathbb{C}^n\}$, e.g.
columns of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in X_2$ but not $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

• Have a map
$$X_n \to Fl(n)$$
:

$$(\ell_1,\ldots,\ell_n)\mapsto \ell_1\subseteq \ell_1\oplus \ell_2\subseteq\cdots$$

- This is a homotopy equivalence! $\implies H^*(Fl(n)) \simeq H^*(X_n)$.
- ► Con: X_n isn't a compact manifold / projective variety.
- Pro: S_n acts on X_n by permuting lines, which induces the S_n-action on R_n; no such S_n-action on Fl(n) is evident.

- A rank *m* vector bundle *E* over a space *X* assigns an *m*-dimensional (complex) vector space to each point of *X*.
- Example: a *trivial* vector bundle assigns the same vector space to each point.
- Example: the rank 1 *tautological bundle* L_i assigns to the point $(\ell_1, \ldots, \ell_n) \in X_n$ the vector space ℓ_i .

Why $H^*(X_n) \simeq R_n$?

Given E a vector bundle over X:

- ▶ Have Chern classes $c_d(E) \in H^{2d}(X)$ and the total Chern class $c(E) = \sum_{d \ge 0} c_d(E) = 1 + c_1(E) + \cdots + c_{\mathsf{rank}(E)}(E) \in H^*(X).$
- If E is trivial then c(E) = 1.
- Whitney sum formula: $c(E \oplus F) = c(E)c(F)$ and c(E/F) = c(E)/c(F).

Recall the (rank 1) tautological bundles L_1, \ldots, L_n over X_n .

- Set $x_i = c_1(L_i)$, so $c(L_i) = 1 + x_i$.
- $L_1 \oplus \cdots \oplus L_n = \mathbb{C}^n$ is trivial on X_n , so

$$1 = c(L_1 \oplus \cdots \oplus L_n) = \prod_i c(L_i) = \prod_i (1+x_i) = \sum_{d \ge 0} e_d(x).$$

• Gives an S_n -equivariant map $R_n = \mathbb{Z}[\mathbf{x}]/(e_1, \ldots, e_n) \to H^*(X_n)$; in fact an isomorphism.

The moduli space of spanning line configurations

For $1 \le k \le n$, define $X_{n,k} := \{ (\ell_1, \dots, \ell_n) \in (\mathbb{P}^{k-1})^n : \sum_i \ell_i = \mathbb{C}^k \}.$

Example:

columns of
$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \in X_{4,3}$$
; not columns of $\begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

Theorem (Pawlowski and Rhoades) $H^*(X_{n,k}) \simeq R_{n,k}$ as rings with S_n -action.

Example

►
$$X_{n,n} = X_n$$

► $X_{n,1} = (\mathbb{P}^0)^n = \{ \mathsf{pt} \}$

Chern class arguments give an S_n -equivariant map $R_{n,k} = \mathbb{Z}[\mathbf{x}]/(e_{n-k+1}, \ldots, e_n, x_1^k, \ldots, x_n^k) \to H^*(X_{n,k})$; turns out to be an isomorphism.

• Set
$$S = L_1 \oplus \cdots \oplus L_n$$
, so $c(S) = \prod_i c(L_i) = \sum_d e_d(x)$.

- ► Have a short exact sequence $0 \rightarrow M \rightarrow S \rightarrow L_1 + \dots + L_n = \mathbb{C}^k \rightarrow 0.$
- Whitney formula: $1 = c(\mathbb{C}^k) = c(S/M) = c(S)/c(M)$.
- ► So $c(S) = \sum_{d} e_{d}(x) = c(M)$, which vanishes above degree rank(M) = n k.
- Get an S_n-equivariant map R_{n,k} = ℤ[**x**]/(e_{n-k+1},...,e_n,x^k₁,...,x^k_n) → H^{*}(X_{n,k}); turns out to be an isomorphism.

The Schubert decomposition of X_n (or Fl(n))

The (i, j) entry of the *rank table* of a matrix A is the rank of the upper-left $i \times j$ corner of A:

Γ0	1	0		0	1	1
1	0	0	has rank table	1	2	2
0	0	1		1	2	3

rank table of $\ell_{ullet}\in (\mathbb{P}^{k-1})^n:=$ rank table of matrix with columns $\ell_{ullet}.$

- ▶ For a permutation matrix $w \in S_n$, the set of $\ell_{\bullet} \in X_n$ with the same rank table as w is a *Schubert cell* C_w .
- ► Example: l_• ∈ C₂₁₃ iff the rank table of l_• is the one shown above.

• Fact:
$$X_n = \bigsqcup_{w \in S_n} C_w$$
.

Affine paving of a variety Z: sequence of closed subvarieties $Z = Z_0 \supseteq \cdots \supseteq Z_m = \emptyset$ with $Z_i \setminus Z_{i+1}$ isomorphic to a disjoint union of affine spaces, the *cells* of the paving.

- The Schubert cells are the cells of an affine paving of X_n .
- ► The closed Schubert variety \overline{C}_w determines a cohomology class $[\overline{C}_w] \in H^*(X_n)$.
- Affine paving $\implies H^*(X_n)$ is free on the *n*! classes $[\overline{C}_w]$.
- ► Under the iso. R_n ≃ H^{*}(X_n), the Schubert polynomial 𝔅_w of Lascoux and Schützenberger maps to [C_w].

An affine paving of $X_{n,k}$

Each $\ell_{\bullet} \in X_{n,k}$ is in a "Schubert cell" C_w labeled by a length n word w on $[k] := \{1, \ldots, k\}$ determined as follows:

Say the lex minimal linearly independent subtuple of ℓ_• occurs in positions J; this subtuple is in some Schubert cell C_v ⊆ X_k:

$$k = 2, n = 3 : \ell_{\bullet} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \in C_{21} \subseteq X_2, \quad J = \{1, 3\}$$

Fill the positions of w in J with the letters of v: v = 21 → w = 2?1.

- ▶ If $j \notin J$, then $\ell_j \subseteq \ell_1 + \cdots + \ell_i$ for some i < j
- Set $w_j = w_i$ for the minimal such *i*: w = 221.

Let C_w be the set of $\ell_{\bullet} \subseteq X_{n,k}$ with word w, e.g. $\ell_{\bullet} \in C_{221}$ above.

An affine paving of $X_{n,k}$

For which w is C_w nonempty?

- A word w = w₁ · · · w_n is a Fubini word (packed word) if {w₁, . . . , w_n} = [k] for some k.
- Example: 31323 is Fubini but not 3133.
- Length *n* Fubini words on [k] ↔ ordered set partitions of [n] into k blocks, e.g. 31323 ↔ 2|4|135.

Theorem (Pawlowski and Rhoades)

The sets C_w as w runs over the length n Fubini words on [k] are the cells of an affine paving of $X_{n,k}$.

- Corollary: $H^*(X_{n,k})$ is free of rank #OSP(n,k).
- ► The classes [C_w] are represented by certain *permuted* Schubert polynomials G_v(x_{σ(1)},..., x_{σ(n)}).

- ▶ Rhoades: fix a composition (d₁,..., d_n), consider the space of tuples (V₁,..., V_n) with dim V_i = d_i and V₁ + ··· + V_n = C^k.
- ► Rhoades and Wilson: require linear independence of some of the lines in ℓ_• ∈ X_{n,k} → r-Stirling numbers
- Pawlowski, Ramos, and Rhoades (in progress): representation stability for the S_n-modules H^{*}(X_{n,k}) ~ R_{n,k}.

Questions

Define the Bruhat order on Fubini words by

$$v \leq w \iff C_w \supseteq \overline{C}_v.$$

- When n = k this is the usual strong Bruhat order on S_n
- How to describe covering relations in general?
- Our affine paving of $X_{n,k}$ is *not* a CW decomposition: $C_w \cap \overline{C}_v \neq \emptyset$ need not imply $C_w \subseteq \overline{C}_v$.

Questions

- $\Lambda := ring$ of symmetric functions over \mathbb{Z}
- The Delta conjecture of Haglund, Remmel, and Wilson predicts a combinatorial formula for Δ'_{ek-1}e_n ∈ Λ ⊗ ℚ(q, t).
- ► Haglund, Rhoades, Shimozono: The graded Frobenius characteristic grFrob($R_{n,k} \otimes \mathbb{Q}$) is $\Delta'_{e_{k-1}}e_n\Big|_{r=0}$ (up to a twist).

Does the $H^*(X_{n,k})$ picture help here?

- ► HRS give an explicit expansion grFrob(R_{n,k} ⊗ Q) = ∑g_λ(q)Q'_λ in terms of dual Hall-Littlewood functions Q'_λ.
- Q'_λ is also (essentially) the graded Frobenius characteristic of H*(Springer fiber indexed by λ).
- Can X_{n,k} be decomposed using Springer fibers in a way that explains the expansion grFrob(R_{n,k} ⊗ ℚ) = ∑g_λ(q)Q'_λ?
- ▶ Is there an " $X_{n,k}$ version" of Springer fibers?