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Goal

I Discriminants: tangency and duality
I Discriminants: tangential intersections
I Generalized Schäfli decomposition
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Natural concept

The discriminant is a concept occurring naturally in
connection with the way we grasp 3D objects.

Figure: Boundary locally defined by f (x , y , z) = 0. The
Discriminant with respect to x is the “plane curve" defined by
the equation obtained by eliminating x from {f = 0, ∂f

∂x = 0}
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The discriminants of univariate polynomials

The discriminant: gives information about the nature of the
polynomial’s roots.

I the discriminant of c2x2 + c1x + c0 is c2
1 − 4c2c0.

I for higher degrees the discriminant Dd is a
(2d − 1)× (2d − 1) determinant :

Dd = (1/cd )det



cd cd−1 · · · c0 0 · · · 0
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...

...
...

...
...

...
...

dcd (d − 1)cd−1 · · · 0 0 0 0
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0 0 0 0 · · · · · · 2d2 c1
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Algebra vs Geometry

Algebra: Dd = Res(p(x),p′(x))

Geometry:
1 x x2 x3

P1 ↪→ Pd

J1 = OP1(d − 1)⊕OP1(d − 1) and deg(c1(J1)) = 2d − 2
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The definition of discriminant

Let A ⊂ Zn be a finite subset of lattice points:

A = {m0,m1, . . . ,mN}
A polynomial p in d variables is supported on A if

p(x1, . . . , xn) =
∑

mi∈A
cixmi

where xm = xk1
1 xk2

2 · · · x
kn
n if m = (k1, . . . , kn) ∈ A

Figure: Quadrics c0 + c1x + c2y + c3xy
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The definition of discriminant

Definition
Let A = {m0,m1, . . . ,mN} ⊂ Zn. The discriminant of A is
(if it exists!) a polynomial DA(c0, . . . , cN) in N + 1 variables
vanishing whenever the corresponding polynomial
p(x) =

∑
mi∈A cixmi has some multiple root in (C∗)n.

DA(c0, . . . , cN) = 0⇔
there is x ∈ (C∗)n s.t.

p(x) = . . . = ∂p
∂xj

(x) = . . . = 0

Otherwise DA = 1.
Existence does not mean an efficient algorithm and hence
a formula!
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Example 1

For the configuration A = {(0,0), (1,0), (0,1), (1,1)} ⊂ Z2

The discriminant is given by an homogeneous polynomial
∆A(c0, c1, c2, c3) vanishing whenever the corresponding
quadric has a singular point in (C∗)2. I

DA(c0, c1, c2, c3) = det(M) = c0c3 − c1c2.
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Geometry

Let Q ⊂ C2 and p ∈ C2

I general tangent lines to Q do not contain the point p
I exceptional locus: {x ∈ Q |p ∈ TQ,x} has degree 2.
I It gives the degree of the discriminant.
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Geometry

I The polar classes Pi are codimension i cycles on
X ↪→ PN

I P1 on Q is a zero-cycle of degree 2.
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Projective duality

X ↪→ Pn be a smooth embedding of dimension d .
The dual variety is defined as:

X ∗ = {H ∈ (Pn)∗ tangent to X at some x ∈ X}
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Projective duality

I N(X ) = {(x ,H) : H tangent to X at x ∈ X} ⊂
X × (PN)∗ has dimension N − 1

Bertini For general varieties, the restriction of the projection

π : N(X )→ (PN)∗

is generically 1-1.
I Im(π) = X ∗, codimension-one irreducible subvariety

(generically!)
I It is defined by an irreducible polynomial DX , called

the discriminant.
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Polar geometry:the degree and dimension of the
discriminant

Let P0(X ), . . . ,Pn(X ) be the polar classes.

Theorem
X projective variety of dimension n, then

I codim(X ∗) = 1 + n −max{j s.t. Pj(X ) 6= 0}
I Let codim(X ∗) = 1 + n− j then deg(X ∗) = deg(Pj(X )).

Figure: C∗ is another conic, deg(P1(X )) = 2
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Toric projective duality= A-discriminants

I A = {m0, . . . ,mN} ⊂ Zn Let PA = Conv(A)
I ϕA : (C∗)n → PN , ϕ(x) = (xm0 , . . . , xmN )
I XA = Im(ϕA) is a toric embedding
I X ∗A has codimension 1 unless XA is a linear fibration

(PA certain Cayley polytope).
I Smooth: codimension 1 if Pn(XA) = deg(DA) =∑

F�PA(−1)codim(F )(dim(F ) + 1)!VolZ(F ) 6= 0

(x , y)→ (1, x , y , xy)
3! · Area− 2!(perimeter) + 4 =

6− 8 + 4 = 2
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Can a discriminant govern multiple roots of sys-
tems of polynomials?

As before: Let A1, . . . ,An be (finite) in Zn and let f1, . . . , fn
be Laurent polynomials with these support sets and
coefficients in an alg. cl. field K , e.g. C:

pAi (x) =
∑
a∈Ai

ci,axa.

If the coefficients ci,a are generic then, by Bernstein’s
Theorem, the number of common solutions in the algebraic
torus (C∗)n equals the mixed volume MV (Q1,Q2, . . . ,Qn)
of the Newton polytopes Qi = conv(Ai) in Rn.
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Example

Let n = 2 and A1 = A2 = {(0, 0), (1, 0), (0, 1), (1, 1)} be the unit square,
f1 = a00 + a10x1 + a01x2 + a11x1x2, f2 = b00 + b10x1 + b01x2 + b11x1x2.
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tangential intersections
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tangential intersections

Given pA1 , pA2 , we say that x is a tangential solution of the system
pA1 (u) = pA2 (u) = 0 if x is a regular point of the hypersurfaces pAi = 0 and their
normal lines are dependent.

Definition
Given a system of type (A0, . . . ,Ar ). We call an isolated solution u ∈ (C∗)n a
non-degenerate multiple root if the r + 1 gradient vectors ∇x pAi (u), i = 0, . . . , r
are linearly dependent.
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The mixed discriminant

Given A0, . . . ,Ar ⊂ Zn

Definition
The mixed discriminant is a (the!) polynomial
MDA0,...,Ar (c) on the ci,a which vanishes whenever the
polynomials have tangential roots.
MDA0,··· ,Ar (c) is a polynomial in |A0|+ · · ·+ |Ar | variables
When A0 = · · · = Ar = A we denote it by M(r ,A).
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Example

Let n = 2 and A1 = A2 = {(0, 0), (1, 0), (0, 1), (1, 1)} be the unit square,

f1 = a00 + a10x1 + a01x2 + a11x1x2, f2 = b00 + b10x1 + b01x2 + b11x1x2.

∆A1,A2 is the hyperdeterminant of format 2×2×2:

a2
00b2

11 − 2a00a01b10b11 − 2a00a10b01b11 − 2a00a11b00b11 + 4a00a11b01b10 + a2
01b2

10 +

4a01a10b00b11 − 2a01a10b01b10 − 2a01a11b00b10 + a2
10b2

01 − 2a10a11b00b01 + a2
11b2

00

bidegree = (2, 2)
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One more example: The distance to a variety

Consider X ⊂ RN . The Euclidian Distance Degree,
EDD(X ),

number of critical points of the algebraic function:

u 7→ d2
u (X ) wheredX (u) = minx∈X (du(x)) for u ∈ RN generic.
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Consider now a plane curve. Equivalently one looks at the
circles admitting tangent solutions with the curve.

C is a conic: 3x3 matrix M(cij) and the circle by the the
3x3 symmetric matrix M(u, r).
The Mixed Discriminant is given by the 2x3x3
hyperderminant: H(cij ,u, r).
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This proves:

Theorem (Cayley)
Let C be an irreducible conic, then

I EDD(Circle) = 2
I EDD(Parabola) = 3
I EDD = 4 otherwise

The key tool is the use of Schläfli decomposition

MD(A1,A2) = Hyperdet([M1,M2]) = Disct (det(M1 + tM2)).
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Singular intersection of Quadric Surfaces

I Brownic[1906],
I Salmon [1911]
I Farouki [1989]

Completely classified singular intersections of quadric
surfaces.
Key tools:

I Classified by the Hyperdeterminant, i.e. discriminant
of Segre embeddings

I The hyperdeterminant can be computed by iteration
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Two Main Questions:

I Question 1 Can the mixed discriminant be computed
via iteration?

I Question 2 What about singular intersection of higher
dimensional quadrics?
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Towards an answer to question 1

Theorem (Dickenstein-DR-Morrison 2019)

MDr ,A = DCayley(r ,A)

Definition
Let A ⊂ Zd , such that DA 6= 1,deg(DA) = δ, and let
(λ0, . . . , λr ) ∈ Cr+1. Define the iterated discriminant as:

IDr ,A = Dδ∆r (DA(λ0f0 + . . .+ λr fr ))

Abuse of notation: fi = (c i
0, . . . , c

i
N)

deg(Ir ,A) = δ(δ − 1)(r + 1)
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Answer to question 1

Theorem (Dickenstein-DR-Morrison)
A ⊂ Zn, DA 6= 1 and 0 6 r 6 n. Then, the mixed discriminant
MDr ,A 6= 1 divides the iterated discriminant IDr ,A. Moreover,

1. If codimX∗A(sing(X ∗A)) > r , IDr ,A = MDr ,A.

2. If codimX∗A(sing(X ∗A)) = r , IDr ,A = MDr ,A
∏`

i=1 Chµi
Yi
, where

Y1, . . . ,Y` are the irreducible components of sing(X ∗A) of
maximal dimension r , with respective multiplicities µi .

3. If codimX∗A(sing(X ∗A)) < r , IDr ,A = 0.
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Answer to question 2

Theorem (Dickenstein-DR-Morrison)
Let Q1,Q2 be two d-dimensional quadric hypersurfaces
then:

Q1 ∩Q2 singular if and only if I1,2∆d = MD1,2∆d = 0
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n >> 1
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