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Goal

» Discriminants: tangency and duality
» Discriminants: tangential intersections
» Generalized Schafli decomposition
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Natural concept

The discriminant is a concept occurring naturally in
connection with the way we grasp 3D objects.
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Figure: Boundary locally defined by f(x, y,z) = 0. The
Discriminant with respect to x is the “plane curve" defined by

the equation obtained by eliminating x from {f = 0, 4L = 0}
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The discriminants of univariate polynomials

The discriminant: gives information about the nature of the
polynomial’s roots.
» the discriminant of c,x2 + ¢ x + ¢y is €2 — 4¢20p.
» for higher degrees the discriminant D is a
(2d — 1) x (2d — 1) determinant :

Cd Cd—1 -+ C O 0
0 Cd Cd—1 0 0
Dy =(1/co)det | o (d-1)cgy --- 0 0 0 0
0 0 0 0. - 20 o
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Algebra vs Geometry
Algebra: Dy = Res(p(x), p'(x))
x> x3

Geometry: o 5 % % o P! s P9
Ji = Opi(d—1)® Op1(d — 1) and deg(cy(J1)) =2d — 2
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The definition of discriminant

Let A C Z" be a finite subset of lattice points:
A= {mo,m1,...,mN}

A polynomial p in d variables is supported on A if

p(Xt, .. xa) = > cix™

mieA

where x™ = X[ x2 ... xkr it m = (ky,... ko) € A

2

1

Figure: Quadrics ¢y + ¢ix + Coy + C3xy
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The definition of discriminant

Definition

Let A = {mg, my,...,my} C Z". The discriminant of A is
(if it exists!) a polynomial D 4(cy, ..., cn) in N+ 1 variables
vanishing whenever the corresponding polynomial

p(X) = >_m.ca Cix™ has some multiple root in (C*)".

5 there is x € (C*)" s.t.
.A(CO?“'?CN) (X) _8)9(X):"':0
Otherwise D4 = 1.

Existence does not mean an efficient algorithm and hence
a formula!
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Example 1

For the configuration A = {(0,0),(1,0),(0,1),(1,1)} C Z?

o

The discriminant is given by an homogeneous polynomial
A 4(cy, €1, C2, C3) Vanishing whenever the corresponding
quadric has a singular point in (C*)2. |

Da(co; ¢1, €2, c3) = det(M) = cpcs — CiCo.
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Geometry

Let Q c C? and p € C?
» general tangent lines to Q do not contain the point p
» exceptional locus: {x € Q|p € Tqx} has degree 2.
» |t gives the degree of the discriminant.
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Geometry

» The polar classes P; are codimension i cycles on
X — PN
» P;on Qis a zero-cycle of degree 2.
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Projective duality

X < P" be a smooth embedding of dimension d.
The dual variety is defined as:

X* ={H € (P")* tangent to X at some x € X}

-

0 oS all 5y000) o2 2 4_
R =2nysa s = s =2 =S 6wk E = =10 1622 — ' + 24227 — 8%y — o — 82227 — 1621 = 0

11/28



Projective duality

» N(X)={(x,H): Htangentto X at x € X} C
X x (PN)* has dimension N — 1
Bertini For general varieties, the restriction of the projection

7 N(X) = (PN)*

is generically 1-1.

» Im(w) = X*, codimension-one irreducible subvariety
(generically!)

» |t is defined by an irreducible polynomial Dy, called
the discriminant.
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Polar geometry:the degree and dimension of the
discriminant

Let Py(X), ..., Pn(X) be the polar classes.

Theorem
X projective variety of dimension n, then

» codim(X*) =1+ n— max{j s.t. Pj(X) # 0}
» Letcodim(X*) = 1+ n—j thendeg(X*) = deg(P;(X)).

Figure: C* is another conic, deg(P;(X)) =2

13/28



Toric projective duality= .4-discriminants

A={mg,...,my} CZ" Let P4 = Conv(A)
pat(C)" = PN o(x) = (x™, ... x™)

X4 = Im(¢4) is a toric embedding

X’ has codimension 1 unless X4 is a linear fibration
(P4 certain Cayley polytope).

» Smooth: codimension 1if Pp(X4) =deg(D4) =
5=, (—1)0ME) (dim(F) + 1)1 Vol (F) # 0

vV vyYyywy

o ]

o o (X, y) = (1,55, xy)
3! - Area — 2!(perimeter) + 4 =
6-8+4=2
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Can a discriminant govern multiple roots of sys-
tems of polynomials?

As before: Let Ay, ..., A, be (finite) in Z" and let f;, ..., f,
be Laurent polynomials with these support sets and
coefficients in an alg. cl. field K, e.g. C:

p.A,‘(X) - Z Ci7axa'

acA;

If the coefficients c¢; , are generic then, by Bernstein’s
Theorem, the number of common solutions in the algebraic
torus (C*)" equals the mixed volume MV(Qq, Qo, ..., Qn)
of the Newton polytopes Q; = conv(A;) in R".
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Example

Letn=2and 4 = A, = {(0,0),(1,0),(0,1), (1,1)} be the unit square,
fi = apo + @10X1 + o1 X2 + @11 X1 X2, fo = boo + D1oX1 + o1 X2 + by1x1 Xz

Tx2yry
——  HRIYITXY




tangential intersections
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tangential intersections

Given pa,, pa,, we say that x is a tangential solution of the system

Pa, (U) = pa,(u) = 0if x is a regular point of the hypersurfaces p, = 0 and their
normal lines are dependent.

Definition
Given a system of type (Ao, . .., Ar). We call an isolated solution u € (C*)" a
non-degenerate multiple root if the r + 1 gradient vectors Vxpa,(u),i =0, ...,r

are linearly dependent.




The mixed discriminant

Given Ao, ..., A, C Z"

Definition

The mixed discriminant is a (the!) polynomial

MD 4,.....4,(¢) on the ¢; ; which vanishes whenever the
polynomials have tangential roots.

MD 4,.... 4,(c) is a polynomial in | Ag| + - - - + |.A,| variables
When Ay = --- = A, = A we denote it by M(r, A).
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Example

Letn=2and 4 = A, = {(0,0),(1,0),(0,1), (1,1)} be the unit square,
fi = apo + @10X1 + o1 X2 + @11 X1 X2, fa = boo + b1oX1 + bo1 X2 + by1x1 Xz

2 2
¥
2 2
[ —————— e S—
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4 4
Tx2yry Tx2yry
——  aRITYIXRY TRIYZXY

A 4,4, is the hyperdeterminant of format 2x2x2:
a8y b8, — 2agoani bioby1 — 2ago@10bo1br1 — 2800811 boobi1 + 4agoar1 byt bro + 85, b2) +
4agy aioboobyy — 2ag1 @10bg1bro — 28g1811boobro + &gb5y — 2a10811boobor + &4 by

bidegree =




One more example: The distance to a variety

Consider X ¢ RN. The Euclidian Distance Degree,
EDD(X),

number of critical points of the algebraic function:
u — d?(X) wheredx(u) = minyex(dy(x)) for u € RN generic.
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Consider now a plane curve. Equivalently one looks at the
circles admitting tangent solutions with the curve.

©F

C is a conic: 3x3 matrix M(cj;) and the circle by the the

3x3 symmetric matrix M(u, r).
The Mixed Discriminant is given by the 2x3x3

hyperderminant: H(c;, u, r).
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This proves:
Theorem (Cayley)
Let C be an irreducible conic, then
» EDD(Circle) = 2
» EDD(Parabola) = 3
» EDD = 4 otherwise
The key tool is the use of Schléfli decomposition

MD(A+, A2) = Hyperdet([My, Ma]) = Disci(det(M; + tM>)).
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Singular intersection of Quadric Surfaces

» Brownic[1906],

» Salmon [1911]

» Farouki [1989]
Completely classified singular intersections of quadric
surfaces.
Key tools:

» Classified by the Hyperdeterminant, i.e. discriminant

of Segre embeddings
» The hyperdeterminant can be computed by iteration
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Two Main Questions:

» Question 1 Can the mixed discriminant be computed
via iteration?

» Question 2 What about singular intersection of higher
dimensional quadrics?
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Towards an answer to question 1

Theorem (Dickenstein-DR-Morrison 2019)
MDr,A = DCayley(r,A)
Definition

Let A c Z9, such that D4 # 1,deg(D4) = 4, and let
(o, ..., \r) € C'*1. Define the iterated discriminant as:

IDr. 4 = Dsp,(Da(Mofo + ... + Arfr))

Abuse of notation: f; = (cj, ..., ck)
deg(lra) =06(0 —1)(r+1)
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Answer to question 1

Theorem (Dickenstein-DR-Morrison)

ACZ" Dy+#1and0 < r < n. Then, the mixed discriminant
MD;, 4 # 1 divides the iterated discriminant ID; 4. Moreover,

1. If codimx- (sing(X’y)) > r, ID; 4 = MDy 4.
2. If codimx- (sing(X3)) = r, IDr 4 = MDy 4 Hf=1 Chy!, where

Yi,..., Y, are the irreducible components of sing(X’) of
maximal dimension r, with respective multiplicities ;.

3. If codimyx: (sing(X3)) < r, ID; 4 = 0.
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Answer to question 2

Theorem (Dickenstein-DR-Morrison)
Let Qq, Qo be two d-dimensional quadric hypersurfaces
then:

Qi N Qo singular if and only if Iy op,, = MD; 25, = 0
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(THANK YOU)"

n>>1
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