Combinatorics of generalized exponents

Cédric Lecouvey and Cristian Lenart[†]

University of Tours, France; State University of New York at Albany, USA[†]

FPSAC 2019 University of Ljubljana, Slovenia

International Mathematics Research Notices, 2018, DOI 10.1093/imrn/rny157 Cristian Lenart was partially supported by the NSF grant DMS-1362627.

Representations of semisimple Lie algebras

Consider a complex semisimple Lie algebra \mathfrak{g} .

- $R = R^+ \sqcup R^-$ root system,
- P weight lattice,
- P⁺ dominant weights,
- ω_i fundamental weights $(i \in I)$,
- W Weyl group.

Type A_{n-1} :

- $\mathfrak{g} = \mathfrak{sl}_n$,
- weights are compositions,
- dominant weights are partitions (Young diagrams),

•
$$\omega_i = (1^i)_i$$

• $W = S_n$.

Representations of semisimple Lie algebras (cont.)

For a dominant weight $\lambda \in P^+$, let $V(\lambda)$ be the irreducible representation with highest weight λ , and $P(\lambda)$ its weights.

In classical types, a basis of $V(\lambda)$ is indexed by Kashiwara-Nakashima tableaux and King tableaux of shape λ .

Type A_{n-1} : semistandard Young tableaux (SSYT).

$$T = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & \\ 4 & \\ \end{bmatrix} \quad \lambda = (4, 2, 1), \text{ weight}(T) = (1, 3, 1, 2).$$

Lusztig's *t*-analogue of weight multiplicity

For $\mu \in P(\lambda)$, let $K_{\lambda,\mu}$ be the multiplicity of μ in $V(\lambda)$. (In type A, this is the number of SSYT of shape λ , weight μ .)

Lusztig defined the *t*-analogue $K_{\lambda,\mu}(t)$, i.e., $K_{\lambda,\mu}(1) = K_{\lambda,\mu}$, via

$$\frac{\sum_{w \in W} \operatorname{sgn}(w) x^{w(\lambda+\rho)-\rho}}{\prod_{\alpha \in R^+} (1-tx^{-\alpha})} = \sum_{\mu \in P(\lambda)} K_{\lambda,\mu}(t) x^{\mu}$$

Importance of $K_{\lambda,\mu}(t)$

 $K_{\lambda,\mu}(t)$, for λ, μ dominant, is also known as a Kostka-Foulkes polynomial.

This polynomial has remarkable properties:

- it is a special affine Kazhdan-Lusztig polynomial, so K_{λ,μ}(t) ∈ Z_{≥0}[t];
- it records the Brylinski-Kostant filtration of the μ-weight space V(λ)_μ;
- it is related to Hall-Littlewood polynomials (i.e., specializations of Macdonald polynomials at q = 0):

$$s_{\lambda}(x) = \sum_{\mu \in \mathcal{P}^+} \mathcal{K}_{\lambda,\mu}(t) \, \mathcal{P}_{\mu}(x;t) \, ,$$

where $s_{\lambda}(x)$ are the Weyl characters (Schur polynomials in type A).

Combinatorial formulas

In type A_{n-1} , $K_{\lambda,\mu}(t)$ is expressed combinatorially via the Lascoux-Schützenberger charge statistic on SSYT.

Finding combinatorial formulas beyond type A has been a long-standing problem.

Goal. The first such formula, for $K_{\lambda,0}(t)$ in type C_n ($\mathfrak{g} = \mathfrak{sp}_{2n}$). We also have: related formulas, applications, as well as the possibility to extend to all $K_{\lambda,\mu}(t)$ and types B, D.

Remark. The special case $\mu = 0$ is, in fact, the most complex one. Kostant called $K_{\lambda,0}(t)$ generalized exponents, as the classical ones are obtained when λ is the highest root.

Approach. Extend another combinatorial formula in type *A*, due to Lascoux-Leclerc-Thibon (LLT), which is based on Kashiwara's crystal graphs; our approach is simpler compared to LLT.

Kashiwara's crystal graphs

Encode irreducible representations $V(\lambda)$ of the corresponding quantum group $U_q(\mathfrak{g})$ as $q \to 0$.

Kashiwara (crystal) operators are modified versions of the Chevalley generators: e_i , f_i , $i \in I$.

Fact. $V(\lambda)$ has a crystal basis $B(\lambda)$: in the limit $q \rightarrow 0$ we have

$$egin{array}{ll} f_i, e_i &: B(\lambda)
ightarrow B(\lambda) \sqcup \left\{ m{0}
ight\}, \ f_i(b) = b' & \Longleftrightarrow & e_i(b') = b \,. \end{array}$$

Encode as colored directed graph:

$$f_i(b) = b' \iff b \stackrel{i}{\longrightarrow} b'$$
.

Fact. Classical crystals are realized as graphs on Kashiwara-Nakashima tableaux.

The LLT formula

Notation.

$$arepsilon_i(b) = \max \left\{ k : e_i^k(b)
eq \mathbf{0}
ight\}, \quad arphi_i(b) = \max \left\{ k : f_i^k(b)
eq \mathbf{0}
ight\},$$
 $arepsilon(b) := \sum_{i \in I} arepsilon_i(b) \omega_i, \quad |arepsilon(b)| = \sum_{i \in I} i arepsilon_i(b), \quad arphi(b), \quad |arphi(b)|.$

Theorem. [Lascoux, Leclerc, Thibon] In type A_{n-1} , we have

$$\mathcal{K}_{\lambda,0}(t) = \sum_{b\in B(\lambda)_0} t^{|arepsilon(b)|}$$

There is a more involved formula for the other $K_{\lambda,\mu}(t)$.

Our approach to $K_{\lambda,0}(t)$ in classical types Notation.

- ▶ P and P_n denote all partitions and partitions with at most n parts;
- $\mathcal{P}^{(2)}$ denotes partitions with all parts/rows even;
- $\mathcal{P}^{(1,1)}$ denotes partitions with all columns of even height;
- $c_{\nu}^{\lambda}(\mathfrak{sp}_{2n})$ is the branching coefficient for the restriction from \mathfrak{gl}_{2n} to \mathfrak{sp}_{2n} , corresponding to the weights $\nu \in \mathcal{P}_{2n}$ and $\lambda \in \mathcal{P}_n$, respectively.

By classical results (Kostant, Hesselink, Littlewood), we derive in type C_n (and similarly in the other classical types):

$$rac{\mathcal{K}_{\lambda,0}^{\mathcal{C}_n}(t)}{\prod_{i=1}^n(1-t^{2i})} = \sum_{
u\in\mathcal{P}_{2n}^{(2)}}t^{|
u|/2}\,c_
u^\lambda(\mathfrak{sp}_{2n})\,.$$

Other ingredients

the stable branching rule

$$c_
u^\lambda(\mathfrak{sp}_\infty) = \sum_{\delta \in \mathcal{P}^{(1,1)}} c_{\lambda,\delta}^
u\,,$$

where $c_{\lambda,\delta}^{\nu}$ are the (type A) Littlewood-Richardson coefficients, giving the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\delta)$;

• the combinatorial formula for $c^{\nu}_{\lambda,\delta}$ in terms of the crystal:

$$c_{\lambda,\delta}^{\nu}=\left|LR_{\lambda,\delta}^{\nu}\right|,$$

where

$${\sf LR}^
u_{\lambda,\delta}=\{b\in {\sf B}(\lambda)\,:\, {m arepsilon}(b)\leq \delta\,,\;\; {m arphi}(b)={m arepsilon}(b)+
u-\delta\}\,.$$

Immediate consequences

- new short proof of the LLT formula in type A;
- ▶ stable versions $K_{\lambda,0}^{X_{\infty}}(t)$ of $K_{\lambda,0}^{X_n}(t)$ when the rank *n* goes to ∞ , for $X \in \{A, B, C, D\}$.

Remark. We have

$$\mathcal{K}^{B_\infty}_{\lambda,0}(t)=\mathcal{K}^{D_\infty}_{\lambda,0}(t)\,,\quad \mathcal{K}^{B_\infty}_{\lambda,0}(t)=\mathcal{K}^{\mathcal{C}_\infty}_{\lambda',0}(t)\,.$$

Ingredients for finite rank: type C_n

- a nonstable stable branching rule expressing c^λ_ν(sp_{2n}) outside the stable range ν ∈ P_n, namely when ν ∈ P_{2n} \ P_n; based on recent work of J.-H. Kwon on his spin model for symplectic crystals;
- one of many versions of the combinatorial map expressing the symmetry of LR coefficients:

$$c_{\lambda,\delta}^{
u}=c_{\lambda',\delta'}^{
u'}.$$

The nonstable branching rule

Fix $\lambda \in \mathcal{P}_n$. Recall that when $\nu \in \mathcal{P}_n$ (stable case), we have

$$c_
u^\lambda(\mathfrak{sp}_{2n}) = \sum_{\delta \in \mathcal{P}_{2n}^{(1,1)}} c_{\lambda,\delta}^
u\,,$$

where $c_{\lambda,\delta}^{\nu} = |LR_{\lambda,\delta}^{\nu}| = |LR_{\lambda',\delta'}^{\nu'}|$. But this fails for general $\nu \in \mathcal{P}_{2n}$.

Theorem. [Lecouvey, L.; based on Kwon] For $\nu \in \mathcal{P}_{2n}$, we have

$$c_
u^\lambda(\mathfrak{sp}_{2n}) = \sum_{\delta \in \mathcal{P}_{2n}^{(1,1)}} \overline{c}_{\lambda,\delta}^
u\,,$$

where

$$\overline{c}_{\lambda,\delta}^{\nu} = \left| \{ T \in LR_{\lambda',\delta'}^{\nu'} : r_i > \delta_{2i-1}^{\text{rev}} = \delta_{2i}^{\text{rev}} \} \right|,$$

and $(r_1 \leq \ldots \leq r_p)$ is the first row of T .

The formula for $K_{\lambda,0}^{C_n}(t)$

Notation. $D_{2n}(\lambda)$ denotes the subset of distinguished vertices in $B_{2n}(\lambda)$ of type A_{2n-1} , that is, vertices b with

- $\varphi_i(b) = 0$ for any odd i,
- $\varepsilon_i(b)$ even for any odd *i*;
- flag condition: the entries in row *i* are $\geq 2i 1$.

Main theorem. [Lecouvey, L.] We have

$$\mathcal{K}^{C_n}_{\lambda,0}(t) = \sum_{b\in D_{2n}(\lambda)} t^{ig|arepsilon^*(b)+\mu_{b,n}ig|/2}\,.$$

where

$$\left|\varepsilon^{*}(b)+\mu_{b,n}\right|/2=\sum_{i=1}^{2n-1}(2n-i)\left\lceil\frac{\varepsilon_{i}(b)}{2}\right
ceil$$

.

Another version of the formula

Goal. Express $K_{\lambda,0}^{C_n}(t)$ in terms a combinatorial set naturally indexing a basis of the 0-weight space $V(\lambda)_0$.

Definition. King tableaux are SSYT of a given shape λ in the alphabet $\{1 < \overline{1} < 2 < \overline{2} < \ldots < n < \overline{n}\}$ satisfying: the entries in row *i* are $\geq i$.

Fact. There is an easy bijection between $D_{2n}(\lambda)$ and King tableaux.

Applications of our formula for $K_{\lambda,0}^{C_n}(t)$

$$\blacktriangleright \ {\mathcal K}_{\lambda,0}^{{\mathcal C}_{n+1}}(t)-{\mathcal K}_{\lambda,0}^{{\mathcal C}_n}(t)\in {\mathbb Z}_{\geq 0}[t];$$

•
$$\mathcal{K}_{\omega_{2p},0}^{C_n}(t) = \mathcal{K}_{\gamma_p,0}^{A_{n-1}}(t^2)$$
, where $\gamma_p = (2^p, 1^{n-2p})$ (conjectured by Lecouvey);

• calculation of the smallest power in $K_{\lambda,0}^{C_n}(t)$.

Extend our work from $K_{\lambda,0}^{C_n}(t)$ to all $K_{\lambda,\mu}^{C_n}(t)$.

Main idea. Extend the statistic on vertices of weight 0 to the whole crystal via an atomic decomposition of the crystal; see our poster.