Computing distance-regular 'ﬁraph and association
scheme parameters in SageMath with sage-drg

Janoé Vidali Association schemes
* Association schemes were defined by Bose and Shimamoto in 1952 as a theory
University of Ljubljana underlying experimental design.

* They provide a unified approach to many topics, such as
= combinatorial designs,
= coding theory,
= generalizing groups, and

Live slides on Binder = strongly regular and distance-regular graphs.

https://github.com/jaanos/sage-drg

Examples

« Hamming schemes: X = Z¢, z R; y < weight(z —y) = i
e Johnsonschemes: X = {S C Z, | |S| = d} (2d < n),
zRys|zNyl=d—i

Definition

o Let X beasetofverticesand R = {Ry = idx, R1,...,Rp}asetof
symmetric relations partitioning X2

¢ (X,R)is said to be a D-class association scheme if there exist numbers pfj (

0 < h,i,j < D)suchthat,foranyz,y € X,
zR,y= [{z€ X |z R; zR; y}| :pi}

o Wecall the numbersplhj (0 < hyi,j < D)intersection numbers.

. Bose-Mesner algebra
Main problem g

 Does an association scheme with given parameters exist? Let A; be the binary matrix corresponding to the relation R; (0 < i < D).

= |fso,isitunique?
= Canwe determine all such schemes?

o Lists of feasible parameter sets have been compiled for strongly regular and
distance-regular graphs.

* Recently, lists have also been compiled for some Q-polynomial association
schemes.

* Computer software allows us to efficiently compute parameters and check for
existence conditions, and also to obtain new information which would be helpful d
in the construction of new examples. E;oE; = i Z q"Ey,

Xl i=

The vector space M over R spanned by 4; (0 < ¢ < D)is called the Bose-
Mesner algebra.

M has asecond basis { Ey, E1, . . ., Ep} consisting of projectors to the
common eigenspaces of A; (0 < 7 < D).

There are nonnegative constants qh called Krein parameters, such that

ij

where o is the entrywise matrix product.

In [2]:

out[2]:

In [3]:

Out[3]:

In [4]:
Out[4]:

In [5]:

Out[5]:

In [6]:

out[6]:

In [8]:

Out[8]:

Parameter computation: general association schemes

import drg

p = [I[1, o, 0, 0], [0, 6, 0, 0], [0, O, 3, 0], [0, 0, O, 6]],
fte, 1, o, o1, I1, 2, 1, 21, [0, 1, 0, 2], [0, 2, 2, 2]],
[te, o, 1, o], fo, 2, 0, 41, [1, 0, 2, 0], [0, 4, 0, 2]],
[te, o, o, 11, [0, 2, 2, 2], [0, 2, O, 1], [1, 2, 1, 2]]]

scheme = drg.ASParameters(p)

scheme.kreinParameters ()

0: [10
6
0
0

NN
NeHO owoo
NNNO oooo

s
NNNE AN
roNe oNoR
~N

Parameter computation: metric and cometric schemes

from drg import DRGParameters
syl = DRGParameters([5, 4, 2], [1, 1, 4])
syl

Parameters of a distance-regular graph with intersection array {5, 4, 2; 1, 1,
4}

syl.order()

36

from drg import QPolyParameters

q225 = QPolyParameters([24, 20, 36/11], [1, 30/11, 24])
9225

Parameters of a Q-polynomial association scheme with Krein array {24, 20, 36/1
1; 1, 30/11, 24}

q225.order()
225

syl.kreinParameters()

6: [1 0 0 0]
[0616 0 0]
[0 010 0]
[6 6 0 9]
1: [[¢] 1] 0]
[144/522/5 9/5]
[0 22/5 2 18/5]
[06 9/518/5 18/5]
2: [0 0 1 0]
[0 176/25 16/5 144/25]
[1 16/5 4 9/5]
[0 144/25 9/5 36/25]
3: 1

0 0 0]
0 16/5 32/5 32/5]
0 32/5 2 8/5]
132/5 8/5 0]

In [7]:

Out[7]:

In [9]:

Out[9]:

Metric and cometric schemes

Ifpll # 0 (resp.q/; # 0)implies [— j| < h < i+ j then the association
scheme is said to be metric (resp. cometric).

The parameters of a metric association scheme can be determined from the
intersection array
{bo,b1,.--,bp-15c1,¢2, .. ep} (b = P06 =Py q)-

The parameters of a cometric association scheme can be determined from the
Krein array

« 1k . x « i . i
{05,055, b _pichscsie o acpt (B = Ti10 G *ql,i—l)‘

Metric association schemes correspond to distance-regular graphs.

syl.pTable()
0:

NNHO 0ok
o

rhroO

syl.distancePartition()

Distance partition of {5, 4, 2; 1, 1, 4}

@)
©)
®

In [10]:

out[10]:

In [14]:

In [16]:

syl.distancePartition(1)

l—d\stancPJo\amtion of {5,4,2;1,1, 4}
4

Feasibility checking

A parameter set is called feasible if it passes all known existence conditions.

Let us verify that H (3, 3) is feasible.
f1.check feasible()

No error has occured, since all existence conditions are met.

Triple intersection numbers

* Insome cases, triple intersection numbers can be computed.
* Nonexistence of some Q-polynomial association schemes has been proven by
obtaining a contradiction in double counting with triple intersection numbers.

q225.check_quadruples()

InfeasibleError Traceback (most recent call last)
<ipython-input-16-40f750f5d8a3> in Q]
----> 1 q225.check_quadruples()

/home/janos/repos/git/sage-drg/jupyter/2019-07-04-fpsac/drg/assoc_scheme.py in
(self, solver)

685 "d(w, y) = %d, d(w, z) = %d,

686 "d(x, y) =%d, d(x, z) =%, "
--> 687 "d(y, z) = %d" % (sd + st))

688 if len(rist]) <1

689 zero[st] = {(sh, si, sj)

InfeasibleError: found forbidden quadruple wxyz with d(w, x) =1, d(w, y) =1,
d(w, z) =1, d(x, y) =3, d(x, z) =3, d(y, z) =3

Integer linear programming has been used to find solutions to multiple systems of linear
Diophantine equations, eliminating inconsistent solutions.

In [11]:

Out[11]:

In [12]:

Out[12]:

In [13]:

Out[13]:

In [15]:

Parameter computation: parameters with variables

Let us define a one-parametric family of intersection arrays.

var("r")
DRGParameters ([2*r"2*(2*r+1), (2*r-1)*(2*r"2+r+l), 2*r*2], [1, 2*r"2, r*(4*
-0

Parameters of a distance-regular graph with intersection array {4*r"3 + 2*r"2,
4¥rt3 4 r - 1, 2%r72; 1, 2%r72, 4%r%3 - r}

f1 = f.subs(r == 1)
f1l

Parameters of a distance-regular graph with intersection array {6, 4, 2; 1, 2,
3}

The parameters of f1 are known to uniquely determine the Hamming scheme H(3, 3).

f2 = f.subs(r == 2)
2

Parameters of a distance-regular graph with intersection array {40, 33, 8; 1,
8, 30}

Let us now check whether the second member of the family is feasible.

f2.check feasible()

InfeasibleError Traceback (most recent call last)
<ipython-input-15-83ad4aafdb73c> in 0
----> 1 f2.check_feasible()

/home/janos/repos/git/sage-drg/jupyter/2019-07-04-fpsac/drg/drg.pyc in
(self, checked, skip, derived)

682 for name, check in checks:

683 if name not in skip:
--> 684 check()

685 if not derived:

686 return

/home/janos/repos/git/sage-drg/jupyter/2019-07-04-fpsac/drg/drg.pyc in
(self)

in zip(self.b[:-1] + self.c[1:], b + c)], v

ars)

644 if any(checkConditions(cond, sol) for sol in sols):
--> 645 raise InfeasibleError(refs = ref)

646

647 def check feasible(self, checked = None, skip = None, derived = Tr
ue):

InfeasibleError: nonexistence by Jurisic¢vidalil2

In this case, nonexistence has been shown by matching the parameters against a list of
nonexistent families.

