Queer supercrystals in SAGEMATH

Wencin Poh and Anne Schilling

Department of Mathematics, UC Davis Trac ticket: trac.sagemath.org/ticket/25918 based on joint work with Maria Gillespie and Graham Hawkes preprint arXiv:1809.04647

July 4, 2019

SAGEMATH

- Free, open-source mathematical software
- Based on Python (object-oriented)
- Interfaces to GAP, matplotlib, Numpy, R, SciPy, etc.
- Active contribution and maintenance by developers
- Extensive resources and code development for crystals

Queer supercrystals

- Model tensor representations of q(n+1)
- Irreducible representations indexed by strict partitions λ
- Characters: Schur-P function P_{λ}
- Littlewood-Richardson rule:

$$egin{aligned} \mathcal{B}(\lambda)\otimes\mathcal{B}(\mu)&\congigoplus_{
u}g_{\lambda\mu}^{
u}\mathcal{B}(
u)\ &P_{\lambda}P_{\mu}=\sum_{
u}g_{\lambda\mu}^{
u}P_{
u} \end{aligned}$$

Standard q(n+1) crystal

[Grantcharov, Jung, Kang, Kashiwara, Kim '10, '14] Standard crystal \mathcal{B} of type q(n+1):

Let $2 \leq i \leq n$.

$$f_{-i} := s_{w_i^{-1}} f_{-1} s_{w_i}, \quad e_{-i} := s_{w_i^{-1}} e_{-1} s_{w_i},$$

where $s_{w_i} = s_2 s_3 \dots s_i s_1 s_2 \dots s_{i-1}$ and s_i is the reflection along the *i*-th string.

$$f_{-i'} = s_{w_0} f_{-i} s_{w_0}, \quad e_{-i'} = s_{w_0} e_{-i} s_{w_0},$$

where w_0 is the longest element in S_{n+1} .

SAGEMATH : Examples

```
sage: Q = crystals.Letters(['Q',3]); Q
The queer crystal of letters for q(3)
sage: T = tensor([Q]*6)
sage: T.index_set()
(-4, -3, -2, -1, 1, 2)
sage: [t for t in T
             if all(t.epsilon(i)==0
. . . . :
. . . . :
                  for i in Q.index_set())]
[[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 1], [1, 1, 1, 2, 1, 1],
 [1, 1, 2, 1, 1, 1], [1, 1, 2, 1, 2, 1], [1, 1, 2, 2, 1, 1],
 [1, 2, 1, 1, 1, 1], [1, 2, 1, 1, 2, 1], [1, 2, 1, 2, 1, 1],
 [1, 2, 1, 3, 2, 1], [1, 2, 2, 1, 1, 1], [1, 2, 3, 1, 2, 1]]
```

SAGEMATH : Examples

```
sage: Q = crystals.Letters(['Q',3])
sage: T = tensor([Q]*2)
sage: view(T)
```

${\rm SAGEMATH}$: Examples

SAGEMATH : Examples

```
sage: Q = crystals.Letters(['Q',3])
sage: T = tensor([Q]*2)
sage: view(T)
sage: latex(T)
```

```
\begin{tikzpicture}[>=latex,line join=bevel,]
%%
\node (node_8) at (142.8bp,287.0bp) [draw,draw=none] {$1 \otimes 1$};
    \node (node_7) at (162.8bp,147.0bp) [draw,draw=none] {$2 \otimes 2$};
    \node (node_6) at (102.8bp,77.0bp) [draw,draw=none] {$2 \otimes 3$};
    \node (node_6) at (242.8bp,217.0bp) [draw,draw=none] {$2 \otimes 1$};
    \node (node_4) at (282.8bp,147.0bp) [draw,draw=none] {$3 \otimes 3$};
    \node (node_2) at (142.8bp,70.0bp) [draw,draw=none] {$3 \otimes 3$};
    \node (node_1) at (242.8bp,71.0bp) [draw,draw=none] {$1 \otimes 3$};
    \node (node_1) at (242.8bp,71.0bp) [draw,draw=none] {$3 \otimes 2$};
    \node (node_0) at (102.8bp,217.0bp) [draw,draw=none] {$1 \otimes 2$};
```

Stembridge axioms: Axioms

Main relations:

Dual axioms similarly hold.

Characterization: Local queer axioms

Conjecture (Assaf, Oguz 2018)

In addition to the Stembridge axioms, the following relations characterize type q(n + 1) crystals.

Graph on type A_n components: Counterexample

Graph on type A_n components: Another example

Characterization of queer supercrystals

Theorem (GHPS 2018)

Suppose that C is a connected abstract q(n + 1) crystals satisfying:

- 1. C satisfies local queer axioms.
- 2. $G(\mathcal{C}) \cong G(\mathcal{D})$, where \mathcal{D} is a connected component of $\mathcal{B}^{\otimes l}$.
- 3. C satisfies the connectivity axioms C1. C3.

Then as queer supercrystals, $\mathcal{C} \cong \mathcal{D}$.

Thank you!

I would be happy to give a more detailed private computer demonstration if desired!