Doctoral Program Computational Mathematics Numerical Analysis and Symbolic Computation Der Wissenschaftsfonds

J⊼∩

Conclusions

DD-finite functions in Sage

Computing beyond holonomic functions

Antonio Jiménez-Pastor

FPSAC (Jul. 2019)

DD-finite functions in Sage

Installation and usage $_{\bullet\circ\circ\circ}$	Computing and proving $_{\circ\circ\circ\circ}$	$\mathop{Conclusions}_{\scriptscriptstyle OO}$
How to install the package		

Git repository

 ${\tt http://git.risc.jku.at/gitweb/?p=ajpastor/diff_defined_functions.git}$

Zip from webpage

 $\tt https://www.dk-compmath.jku.at/Members/antonio/sage-package-dd_functions$

PyPi (in process)

pip install dd_functions

- Stable version
- Easy to update

Installation	and	usage

 $\underset{\scriptstyle 00000}{\mathsf{Computing}} \text{ and } \mathsf{proving}$

Outline

- Installing the package
- Osing the package
- Omputing with the package
- Proving with the package
- Onclusions

DD-finite functions in Sage

Installation and usage $_{\circ \bullet \circ \circ}$	Computing and proving	$\operatorname{Conclusions}_{\circ\circ}$
DD-finite Functions		

Definition

Let $f \in K[[x]]$ and $R \subset K[[x]]$ a ring. We say that f is differentially definable over R if there exist $d \in \mathbb{N}$ and elements in $R r_0(x), ..., r_d(x)$ such that:

 $r_d(x)f^{(d)}(x) + \dots + r_0(x)f(x) = 0.$

Installation	and	usage
0000		

Computing and proving

D-finite examples

Elementary functions

Exponential (Exp), trigonometric (Sin, Cos),...

Special functions

Bessel functions (BesselD), hypergeometric functions (HypergeometricFunction),...

Combinatorial functions

Generating functions for holonomic sequences (Catalan numbers, Fibonacci sequence, etc)

DD-finite functions in Sage

Installation and usage $_{\circ\circ\circ\circ}$	Computing and proving $_{\bullet\circ\circ\circ}$	$\underset{\circ\circ}{Conclusions}$
Operations supported		

Arithmetic operations

Addition (+, -), product (*, /, ^)

Differential operations

Derivative (derivative), integration (integrate)

Composition

Using the standard call in Sage.

Installation and usage $_{\circ\circ\circ\bullet}$

 $\underset{\scriptscriptstyle oooo}{\text{Computing and proving}}$

Conclusions

DD-finite examples

Classic non-holonomic

Double exponential $(e^{e^{x}-1})$, tangent (Tan),...

Mathieu functions

DD-finite generalization of the sine and cosine

show(MathieuD(init=(1,1)))

ſ	$f''(x) + g_0(x)f(x) = 0$
	where
$a_{-}(\mathbf{x})$	$g_0^{(3)}(x) + (4)g_0'(x) = 0$
$g_0(x)$.	$g_0(0) = a - 2q, g'_0(0) = 0, g''_0(0) = 8q, g_0^{(3)}(0) = 0$
	f(0) = 1, f'(0) = 1, f''(0) = -a + 2q

DD-finite functions in Sage

Installation and usage	Computing and proving $\circ \bullet \circ \circ$	$\operatorname{Conclusions}_{\circ\circ}$
Extracting sequence		

Ordinary generating functions

Method getSequenceElement allows to get the associated sequence.

Exponential generating functions

Method getInitialValue allows to get the associated exponential sequence.

Bell numbers

Exp(Exp(x)-1).getInitialValueList(10)

[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147]

Computing and proving $\circ \circ \circ \circ$

g

Conclusions

Proving DD-finite identities

Constant Wronskian $w''(x) - (a - 2q\cos(2x))w(x) = 0,$ $w'_1w_2 - w'_2w_1 = 1.$

DD-finite functions in Sage

Installation and usage $_{\circ\circ\circ\circ}$	Computing and proving	Conclusions ●○
Conclusions		

Features

- Sage package for DD-finite functions
- Arithmetic and differentil porperties implemented
- Composition implemented
- Zero recognition (equality) implemented

To be done

- Improve performance
- Getting more examples
- Polish the current implementation

stallation	and	usage	

Computing and proving $\circ \circ \circ \bullet$

Conclusions

Proving DD-finite identities

Constant Wronskian	
$w''(x) - (a - 2q\cos(2x))w(x) = 0, \ w'_1w_2 - w'_2w_1 = 1.$	
<pre>v = MathieuCos(); w = MathieuSin(); v*w.derivative() - w*v.derivative() == 1</pre>	
True	

DD-finite functions in Sage

Installation and usage	$\underset{\scriptstyle 0000}{\text{Computing and proving}}$	Conclusion

Thank you!

Antonio Jiménez-Pastor

- https://www.dk-compmath.jku.at/people/antonio
- https://www.risc.jku.at/home/ajpastor

Sage package:

https://www.dk-compmath.jku.at/Members/antonio/ sage-package-dd_functions