Balanced triangulations on few vertices and an implementation of cross-flips

Lorenzo Venturello

presented by Alexander Wang

FPSAC 2019 – Ljubljana, Slovenia 02/07/2019

The problem

Definition: A d-dimensional simplicial complex is **balanced** if its graph can be properly (d+1)-colored.

The barycentric subdivision of any triangulation is balanced, with a large vertex set.

Problem: Find balanced triangulations of *d*-manifolds on **few vertices**.

Our solution

Reduce the number of vertices using local transformations.

Definition: (Izemstiev-Klee-Novik, 2017) A **cross-flip** on a balanced d-dimensional simplicial complex Δ is given by:

$$\Delta \rightarrow (\Delta \setminus \Gamma) \cup (\partial \mathcal{C}_{d+1} \setminus \Gamma),$$

for some induced subcomplex $\Gamma \subset \Delta$ that is isomorphic to a shellable and coshellable d-dimensional subcomplex of $\partial \mathcal{C}_{d+1}$.

We obtain results for d = 2, 3. Already for d = 3 it is hard to find a sequence of flips reducing the number of vertices.

$ \Delta $	$Min f(\Delta)$	$f(Bd(\Delta))$	Min. Balanced f known
S ²	4	14	6
\mathbb{T}	7	42	9
$\mathbb{T}^{\#2}$	10	70	12
$\mathbb{T}^{\#3}$	10	80	14
$\mathbb{T}^{\#4}$	11	96	14
$\mathbb{T}^{\#5}$	12	112	16
T#2 T#3 T#4 T#5 ℝ P 2	6	31	9
$(\mathbb{R}P^{2})^{\#2}$	8	48	11
$(\mathbb{R}\mathbf{p}^2)^{\#2}$ $(\mathbb{R}\mathbf{p}^2)^{\#3}$ $(\mathbb{R}\mathbf{p}^2)^{\#4}$ $(\mathbb{R}\mathbf{p}^2)^{\#5}$	9	59	12
$(\mathbb{R}P^2)^{\#4}$	9	64	12
$(\mathbb{R}P^2)^{\#5}$	9	69	13

$ \Delta $	Min	$f_0(Bd(\Delta))$	Min. Bal.
	$f_0(\Delta)$		f ₀ known
S^3	5	30	8
$S^2 \times S^1$	10	148	14
$S^2 \times S^1$	9	126	12
$\mathbb{R}P^3$	11	182	16
L(3,1)	12	240	16
L(4, 1)	14	308	20
L(5,1)	15	358	22
L(5,2)	14	316	20
L(6,1)	16	408	24
$(S^2 \times S^1)^{\#2}$	12	208	16
$(S^2 \times S^1)^{\#2}$	12	208	16
$(S^2 \times S^1) \# \mathbb{R} \mathbf{P}^3$	14	264	20
$(\mathbb{R}\mathbf{P}^3)^{\#2}$	15	314	21
$(S^2 \times S^1)^{\#3}$	13	262	20
$(S^2 \times S^1)^{\#3}$	13	262	19
$S^1 \times S^1 \times S^1$	15	390	24
Oct. space	15	378	24
Cube space	15	330	23
Poincaré	16	392	26
$\mathbb{R}\mathbf{P}^2 \times S^1$	14	308	24
Non-shellable	18	536	28
Shellable, non-vd	16	400	22