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asymmetric simple exclusion process (ASEP)

the ASEP is a particle process describing particles hopping on a finite 1D
lattice: 1 particle per site, at each time step any two adjacent particles
may swap with some probability, with possible interactions at the
boundary
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multispecies ASEP on a ring: now we have particles of types 0, 1, . . . , L
with Ji particles of type i , represent the type by λ = (LJL , . . . , 1J1 , 0J0).
(Here λ = (3, 2, 2, 2, 1, 0, 0, 0))

Markov chain with states that are rearrangements of the parts of λ,
where possible transitions between states are swaps of adjacent particles:

A B B AX Y X Y
1

t

when A < B. (0 ≤ t ≤ 1)
main question: find an explicit formula for the stationary probabilities, i.e.
the left eigenvector corresponding to eigenvalue 1 of the transition matrix.



stationary probabilities
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Pr(2, 0, 1, 0, 2) =
1

Z
(3 + 7t + 7t2 + 3t3) Pr(0, 2, 1, 0, 2) =

1

Z
(5 + 6t + 7t2 + 2t3)

Pr(2, 1, 0, 0, 2) =
1

Z
(6 + 7t + 6t2 + t3) Pr(2, 0, 0, 1, 2) =

1

Z
(1 + 6t + 7t2 + 6t3)

Pr(2, 1, 2, 0, 0) =
1

Z
(3 + 7t + 7t2 + 3t3) Pr(2, 0, 1, 2, 0) =

1

Z
(2 + 7t + 6t2 + 5t3)

Z =
∑
µ P̃r(µ) (partition function)



ASEP and Macdonald polynomials

symmetric Macdonald polynomial Pλ(x1, . . . , xn; q, t) defined by:

Pλ = mλ +
∑
µ<λ

cµλmµ, 〈Pλ,Pµ〉 = 0 if λ 6= µ

Schur functions sλ at q = t

Hall-Littlewood polynomials at q = 0

Jack polynomials at t = qα and q → 1

partition function of the ASEP on a ring at
x1 = · · · = xn = q = 1:

Pλ(1, . . . , 1; 1, t) =
∑
µ

P̃r(µ)

(Cantini-de Gier-Wheeler ’15)



nonsymmetric Macdonald polynomials Eµ(x; q, t)

Eµ are simultaneous eigenfunctions of certain products of
Demazure-Luztig operators, which are generators for the
affine Hecke algebra of type An−1:

(Ti−t)(Ti +1) = 0, TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi if |i−j | > 1

Ti f = tf − txi − xi+1

xi − xi+1
(f − si f )

Yi = Ti · · ·Tn−1ωT
−1
1 · · ·T

−1
i−1, YiEµ = φi (µ)Eµ

Eµ stabilize to Pλ, specialize to Demazure characters at
q = t = 0, specialize to key polynomials at q = t =∞.

Eµ(1, . . . , 1; 1, t) = P̃r(µ) when µ is a partition



probabilities of the ASEP with multiline queues

Special case: t = 0 (Ferarri-Martin ’05)

A multiline queue for particles of types 0, 1, . . . , L on an ASEP of n
locations is a ball system on a cylinder of L rows and n columns

Each ball picks the first available ball to pair with in the row below,
weakly to its right

The state of the multiline queue is read off Row 1
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Theorem (Ferrari-Martin ’05)

Pr(µ)(t = 0)

is proportional to the number of multiline queues with bottom row µ.



multiline queues for general t

Combine a ball system with a queueing algorithm.
Each ball chooses an available ball to pair with in the row below. t counts
the number of available balls skipped: assign weight ttotal skipped(1− t).

The weight of each non-trivial pairing is tskipped (1−t)

1−tfree
.

The state of the multiline queue is read off Row 1.

j times: skipped = 3j + 2

(1− t)t3j+2

3

3 (1− t)
∑

j t
3j+2 = t2(1−t)

1−t3

skipped

free

3

3

t2(1−t)
1−t3 · (1−t)

1−t2

3

· 1

3

· t(1−t)
1−t42

2

· 1

1 1
= t3(1−t)4

(1−t4)(1−t3)(1−t2)

µ = 2 1 0 1 3 3

row 3

row 2

row 1

wt(M) =
∏

pairing

tskipped
(1− t)

1− tfree

Theorem (Martin ’18, Corteel-M-Williams ’18)

Pr(µ) =
1

Z

∑
M∈MLQ(µ)

wt(M)



putting the “q” in the queue

Define the x-weight of a queue M to be xM =
∏

j x
# balls in col j
j

Each pairing (of type `, from row r) that wraps around contributes q`−r+1

Weight for each pairing is tskippedq(`−r+1)δwrap 1−t
1−q`−r+1tfree

3

3 (1− t)
∑

j t
3j+2qj+1 = qt2(1−t)

1−qt3
qt2(1−t)
1−qt3 · (1−t)

1−qt2 · 1 ·
t(1−t)
1−q2t4 · 1

= qt3(1−t)4
(1−q2t4)(1−qt3)(1−qt2)

xM = x21x
2
2x3x

2
4x5x
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wt(M)(x; q, t) = xMtskipped
∏

pairings

q(`−r+1)δwrap 1− t

1− q`−r+1tfree

Theorem (Corteel-M-Williams ’18)

Eµ(x; q, t) =
∑

M∈MLQ(µ)

wt(M)(x; q, t) when µ is a partition

Pλ(x; q, t) =
∑

M∈MLQ(λ)

wt(M)(x; q, t)



proof

We define fµ(x; q, t) =
∑

M∈MLQ(µ) wt(M) and show that:

Ti fµ =

{
fsiµ if µi < µi+1

tfµ if µi = µi+1

fµ1,...,µn(x1, . . . , xn) = qµn fµn,µ1,...,µn−1(qxn, x1, . . . , xn−1)

(fµ and Eµ are related by a triangular change of basis)

thus:
Eµ = fµ when µ is a partition

and
Pλ =

∑
µ

fµ



Koornwinder polynomials (Macdonald of type BC)

1t β

δ

α

γ

Koornwinder polynomial K(n−r ,0,...,0) at q = t can be
computed from the partition function Zn,r (t;α, β, γ, δ) of the
two-species ASEP with open boundaries (Corteel-Williams
2015, Cantini 2015)

first combinatorial formula for certain special cases of
Koornwinder polynomials using ASEP (Corteel-M-Williams
2016)

Goal: compute nonsymmetric Kornwinder polynomials
through multiline queues for the multispecies ASEP with open
boundaries?


