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The number of reduced reflection factorizations of ¢

Theorem (Hurwitz, 1892)

There are n"~2 (minimal length) factorizations t - - - t,_1 = (12---n) € S, where
the t;'s are transpositions.
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The number of reduced reflection factorizations of ¢

Theorem (Hurwitz, 1892)

There are n"~2 (minimal length) factorizations t - - - t,_1 = (12---n) € S, where
the t;'s are transpositions.

For example, the 3! factorizations

(12)(23) = (123)  (13)(12) = (123)  (23)(13) = (123).
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The number of reduced reflection factorizations of ¢

Theorem (Hurwitz, 1892)

There are n"~2 (minimal length) factorizations t; - - - t,_1 = (12---n) € S, where
the t;'s are transpositions.

For example, the 3! factorizations

(12)(23) = (123)  (13)(12) = (123)  (23)(13) = (123).

Theorem (Deligne-Arnol'd-Bessis)

For a well-generated, complex reflection group W and a Coxeter element c, there
h"n!

are —— (minimal length) reflection factorizations t; - - - t, = ¢ where h =

(Wi

cl.

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 2/19



Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw (N) = #{(t1,--- ,tn) € R" | t1-- - tn = C}.
Now, consider the exponential generating function:
N

FACs, () = 3 Factsmc(N)%.

N>0
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw (N) = #{(t1,--- ,tn) € R" | t1-- - tn = C}.
Now, consider the exponential generating function:
N

FACs, () = 3 Factsmc(N)%.

N>0

Theorem (Jackson, '88)

Ifc=(12---n) € S, then
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw (N) = #{(t1,--- ,tn) € R" | t1-- - tn = C}.
Now, consider the exponential generating function:
N

FACs, () = 3 Factsmc(N)%.

N>0

Theorem (Jackson, '88)

Ifc=(12---n) € S, then

FACs, o(t) =

Notice that
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw o(N) := #{(t1, -, tn) €ER" | t1-- -ty = c}.

Now, consider the exponential generating function:
N

FACw.o(t) = 3 FactW,c(N)%.

N>0
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw o(N) := #{(t1, -, tn) €ER" | t1-- -ty = c}.

Now, consider the exponential generating function:
N

FACw.o(t) = 3 FactW,C(N)%.

N>0

Theorem (Chapuy-Stump, '12)

If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

FACW’C(t) = —
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FACW’C(t) = —

Notice that

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 4/19



There must be an example we can do by hand?

Let G, := {ld, c} be the group of order 2 and R = {c}. Then,

3 5

t t
FACG,e(t) = th g+ +
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There must be an example we can do by hand?

Let G, := {ld, c} be the group of order 2 and R = {c}. Then,

3t
t+§+§+"'
ef—et e 5
- T:5'(1_e )

FACCZ,C(t)

And a non-example?
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There must be an example we can do by hand?

Let G, := {ld, c} be the group of order 2 and R = {c}. Then,

S
FACc,c(t) = t—l—i—l- 5-1—
et — et et
_ - - =, 1 a2t

5 5 (1—e)
And a non-example?
For C, := {Id,c,---,c" 1} if we pick factors only from U/ := {c}, we again have

g+l §2n+1

FACCmC(t)

ot st
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There must be an example we can do by hand?

Let G, := {ld, c} be the group of order 2 and R = {c}. Then,

S
FACc,c(t) = t—l—i—l- 5-1—
et — et et
_ - - =, 1 a2t

5 5 (1—e)
And a non-example?
For C, := {Id,c,---,c" 1} if we pick factors only from U/ := {c}, we again have

g+l §2n+1

FACCmC(t)

A P AT TR )T

1 n—
= - (e + &7 et 4 g2 et o gt o8
with € a n-th root of unity.
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How to count, the Frobenius way

[(12) + (13) + (23)] - [(12) + (13) + (23)] =3 I1d+3- (123) + 3 - (132)
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How to count, the Frobenius way

[(12) + (13) + (23)] - [(12) + (13) + (23)] =3 I1d+3- (123) + 3 - (132)
Consider the central element % := . _ t of the group algebra C[W/].

N
Z#{(tlv"'ytN)ERN|t1~-~thc} L

N!
N>0
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How to count, the Frobenius way

[(12) + (13) + (23)] - [(12) + (13) + (23)] =3 I1d+3- (123) + 3 - (132)
Consider the central element % := . _ t of the group algebra C[W/].

N

Z#{(t17..7tN)€RN|t1'~tN:C} .%
N>0 !
tN

:Z [c] nV N
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How to count, the Frobenius way

[(12) + (13) + (23)] - [(12) + (13) + (23)] =3 I1d+3- (123) + 3 - (132)
Consider the central element % := . _ t of the group algebra C[W/].

I%%#{(tl,~--,tN)€RN|t1--~tN:c} It\;vl
tN

ZNEZ:O[C} RV NI

=30 ] (e
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How to count, the Frobenius way

[(12) + (13) + (23)] - [(12) + (13) + (23)] =3 I1d+3- (123) + 3 - (132)
Consider the central element % := . _ t of the group algebra C[W/].

tN

Z#{(t17..7tN)€RN|t1"tN:C} .m
N>0 !
tN

e

NS0 N!

tN

=3 [id] B’ )

N>0 N!

1 _ £

=S T ()
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How to count, the Frobenius way

[(12) + (13) + (23)] - [(12) + (13) + (23)] =3 I1d+3- (123) + 3 - (132)
Consider the central element % := . _ t of the group algebra C[W/].

tN
Z#{(t17..7tN)€RN|t1'~tN:C} .m
N>0 !
tN

=> [ n” NI

. N1 t"
L N1 th
=Y S Trew (B e
1 _ _ tN
= —_— EAdlm(X)'X(mN-C 1) NI
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How to count, the Frobenius way

Consider the central element R := ), _ t of the group algebra C[W].
N

= Z ﬁ Z dim(X)-X(iﬁN e N

N>0 xEW
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How to count, the Frobenius way

Consider the central element R := ), _ t of the group algebra C[W].

_NZN Wi 2 dm00 () Wi
R tN
g PIL) (((1))) e
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How to count, the Frobenius way

Consider the central element R := ), _ t of the group algebra C[W].

= Z ﬁ . Zdim(x) . X(%N e %
N>0 xEW
_ 1 X(R)\N -1 tV
=2 W -Xezwx(l)- Cy) X
1 . X(R)
= H)§WX(1) x(c™h) exp (- m)
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How to count, the Frobenius way

Consider the central element R := ), _ t of the group algebra C[W].

= Z ﬁ Zdim(x)-x(f)‘{’v . c_1)~ %
N20 XEW

1 R)\ N iyt

=3 e S () e

Remark (Hurwitz 1901)

Exponential generating functions that enumerate factorizations of the form
a---ay = g, where all a;’s belong to a set C closed under conjugation,
are finite (weighted) sums of (scaled) exponentials.

7/19
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Complex reflection groups and regular elements

A finite subgroup G < GL,(V) is called a complex reflection group if it is

generated by pseudo-reflections. There are C-linear maps t that fix a hyperplane
(i.e. codim(V*) =1).
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Complex reflection groups and regular elements

A finite subgroup G < GL,(V) is called a complex reflection group if it is
generated by pseudo-reflections. There are C-linear maps t that fix a hyperplane
(i.e. codim(V*) = 1).Shephard and Todd have classified (irreducible) complex
reflection groups into:

@ an infinite 3-parameter family G(r, p, n) of monomial groups

@ 34 exceptional cases indexed G4 to Gsy.
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Complex reflection groups and regular elements

A finite subgroup G < GL,(V) is called a complex reflection group if it is
generated by pseudo-reflections. There are C-linear maps t that fix a hyperplane
(i.e. codim(V*) = 1).Shephard and Todd have classified (irreducible) complex
reflection groups into:

@ an infinite 3-parameter family G(r, p, n) of monomial groups

@ 34 exceptional cases indexed G4 to Gsy.

Definition

An element g € W is called (-regular if it has a (-eigenvector v that lies in no
reflection hyperplane.
In particular, a Coxeter element is defined as a e2™/h-regular element for

h= (IR] + |A])/n.
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You already know this definition of Coxeter elements

Example

@ In S, the regular elements are (12---n), (12---n— 1)(n), and their powers.
Indeed, (¢"~1,¢"2,---,1) with { = e*™/" is an eigenvector for (12--- n).

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 9/19



You already know this definition of Coxeter elements

@ In S, the regular elements are (12---n), (12---n— 1)(n), and their powers.
Indeed, (¢"~1,¢"2,---,1) with { = e*™/" is an eigenvector for (12--- n).

@ For real reflection groups:
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The Chapuy-Stump proof

FACw <() = i 30 x(1)- x(e™) - exale- X)

XEW
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The Chapuy-Stump proof

FACw <() = i 30 x(1)- x(e™) - exale- X)

xXEW

Ingredients to calculate the above sum:

@ Well-generated complex reflection groups are classified into two infinite
families G(r,1,n), G(r, r,n) and some exceptional groups among G, to Gs7.
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The Chapuy-Stump proof

FACw <() = i 30 x(1)- x(e™) - exale- X)

xXEW

Ingredients to calculate the above sum:

@ Well-generated complex reflection groups are classified into two infinite
families G(r,1,n), G(r, r,n) and some exceptional groups among G, to Gs7.

@ Characters of the infinite families are essentially indexed by tuples of Young
diagrams. Most of them evaluate to 0 on Coxeter elements.
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The Chapuy-Stump proof

FACw (t) = ﬁ ORORICORTE S

xXEW

Ingredients to calculate the above sum:

@ Well-generated complex reflection groups are classified into two infinite
families G(r,1,n), G(r, r,n) and some exceptional groups among G, to Gs7.

@ Characters of the infinite families are essentially indexed by tuples of Young
diagrams. Most of them evaluate to 0 on Coxeter elements.

@ All complex reflection groups can be described as permutation groups on a
set of roots. GAP can then produce their character tables.
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The Chapuy-Stump proof

Ingredients to calculate the above sum:

@ Well-generated complex reflection groups are classified into two infinite
families G(r,1,n), G(r, r,n) and some exceptional groups among G, to Gs7.

@ Characters of the infinite families are essentially indexed by tuples of Young
diagrams. Most of them evaluate to 0 on Coxeter elements.

@ All complex reflection groups can be described as permutation groups on a
set of roots. GAP can then produce their character tables.

The fact that there is no uniform construction of the irreducible characters lrr(W)
makes it is very difficult to have a uniform proof.
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A uniform argument; the decaf version

Definition

Given a character x € W we define the Coxeter number ¢, as the normalized
trace of . (1 —t). That is,

1
e (IRIx(1) = x(®) =IR| - -
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A uniform argument; the decaf version

Definition

Given a character x € W we define the Coxeter number ¢, as the normalized
trace of . (1 —t). That is,

- 1 _ — R~ XR)
The Frobenius Lemma gives then:
et\R|
FACw 5(t) = T > x(1)-x(g™h) -exp(—t - cy). (1)

xEW
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A uniform argument; the decaf version

Definition

Given a character x € W we define the Coxeter number ¢, as the normalized
trace of . (1 —t). That is,

- 1 _ — R~ XR)
The Frobenius Lemma gives then:
et\R|
FACw 5(t) = T > x(1)-x(g™h) -exp(—t - cy). (1)

xEW

For a cpx reflection group W and a regular element g € W, the total contribution
in (1) of those characters x € W for which c, is not a multiple of |g| is 0.

[Just a whiff of coffee]
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A uniform argument; the decaf version

Definition

Given a character x € W we define the Coxeter number ¢, as the normalized
trace of . (1 —t). That is,

1
Cx = Ol (IRIx(1) = x(R)) = IR| - )

The Frobenius Lemma gives then:

otIR|

> x(1) - x(g7h) exp(—t - cy). (1)

xEW

For a cpx reflection group W and a regular element g € W, the total contribution
in (1) of those characters x € W for which c, is not a multiple of |g| is 0.

[Just a whiff of coffee] There is a cyclic permutation on the characters, induced by
a galois action on the corresponding Hecke characters, that cancels out the
contributions in each non-singleton orbit.
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A uniform argument; the decaf version

We write Iz(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g = ty - - - t.
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A uniform argument; the decaf version

We write Iz(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =t - - - ty. This forces

FAC 0+0-L40.L 0. 17 hing) - Lo
W,g(l’)— 4 ‘I"r 'i‘f'"‘"f‘ 'm—i—(somet Ing)'m'i‘"'
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A uniform argument; the decaf version

We write Iz(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =t - - - ty. This forces

FAC 0+0-L40.L 0. 17 hing) - Lo
W,g(l’)— 4 ‘I"r 'i‘f'"‘"f‘ 'm—i—(somet Ing)'m'i‘"'

etIR]

> x(1)-x(g ™) exp(—t-c)
gl ] ex
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A uniform argument; the decaf version

We write Iz(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =t - - - ty. This forces

FAC ¢ £2 tlr(g)—1 . t/r (&)
we(t) =0+0- I_H). i_|_...-|-0. (GE] + (somet mg)'—IR(g)! qFooc
et‘T\’,l 1 et‘/R'l ~
FACw.(t) = Ty - Do x(D) x(g™h) exp(—t- o) = Wi [‘D(X)} ‘X:e,t.m

&l | ex
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A uniform argument; the decaf version

We write Iz(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =t - - - ty. This forces

FAC ¢ £2 tlr(g)—1 . t/r (&)
we(t) =0+0- I_H). i_|_...-|-0. (GE] + (somet mg)'—IR(g)! qFooc
et‘T\’,l 1 et‘/R'l ~
FACw.(t) = Ty - Do x(D) x(g™h) exp(—t- o) = Wi [‘D(X)} ‘X:e,t.m

gl ] ex
Q 0<c, <|R|+|R*| sothat ®(X)isa polynomial.

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 12/19



A uniform argument; the decaf version

We write Iz(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =t - - - ty. This forces

FAC ¢ £2 tlr(g)—1 . t/r (&)
we(t) =0+0- I_H). i_|_...-|-0. (GE] + (somet mg)'—IR(g)! qFooc
et‘T\’,l 1 et‘/R'l ~
FACw.(t) = Ty - Do x(D) x(g™h) exp(—t- o) = Wi [‘D(X)} ‘X:e,t.m

&l | ex

Q 0<c, <|R|+|R*| sothat ®(X)isa polynomial.
Q@ Write ®(X) = a(a; — X)(az — X) - - - (ax — X).
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A uniform argument; the decaf version

We write Iz(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =t - - - ty. This forces

FAC 0+0-fq0.5 0. U&7 e
we(t) =0+ .I+ .54_...4_ .m+(somet lng)-m—i—...
et‘T\’,l 1 et‘/R'l ~
FACW,g(t):W- > x(1)-x(e )'exp(—t-cx):iIWI [‘D(X)sze,qg'
8| [ cx

Q 0<c, <|R|+|R*| sothat ®(X)isa polynomial.
Q@ Write ®(X) = a(a; — X)(az — X) - - - (ax — X).
Q@ Eachpartaj — X =a; —e el =q; — 14+ t|g| —---
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A uniform argument; the decaf version

We write Iz(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =t - - - ty. This forces

FAC 0+0-fq0.5 0. U&7 e
we(t) =0+ .I+ .54_...4_ .m+(somet lng)-m—i—...
et‘T\’,l 1 et‘/R'l ~
FACW,g(t):W- > x(1)-x(e )'exp(—t-cx):iIWI [‘D(X)sze,qg'
8| [ cx

Q 0<c, <|R|+|R*| sothat ®(X)isa polynomial.
Q@ Write ®(X) = a(a; — X)(az — X) - - - (ax — X).
Q Eachpartaj — X =a; —e t18l =q; — 14 t|g| — -

- contributes a factor of
a; — 1 or t|g| on the leading term, depending on whether a; = 1 or not.
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A uniform argument; the decaf version
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A uniform argument; the decaf version

For a complex reflection group W, and a regular element g € W:

eIl
FACw,g(t) = Ty [(1 X)e(e) (X)”

X=e—tlgl
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A uniform argument; the decaf version

For a complex reflection group W, and a regular element g € W:

eIl
FACw,g(t) = Ty [(1 X)e(e) (X)”

Here ®(X) is of degree % — Ir(g), with ®(0) =1, and (1 — X) fP(X).

X=e—tlgl
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A uniform argument; the decaf version

For a complex reflection group W, and a regular element g € W:

et\R|

FACw,g(t) = Ty [(1 X)e(e) (X)”

X=e—tlgl

Here ®(X) is of degree % — Ir(g), with ®(0) =1, and (1 — X) fP(X).

Because deg(P(X))

(IR] +1R*])/|g| — Ir(g) is sometimes 0, we have:
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A uniform argument; the decaf version

Theorem

For a complex reflection group W, and a regular element g € W:

et\R|

FACW’g(t) = W .

[(1 _ X)) . q;(x)} )

X=e—tlgl

Here ®(X) is of degree % — Ir(g), with ®(0) =1, and (1 — X) fP(X).

A\

Because deg(®(X)) = (|R| + |R*|)/|g| — Ir(g) is sometimes 0, we have:

Corollary

When W is a complex reflection group and g € W a regular element, then
et\R| )
(1- e—t\gl) R

Q If|g| = dy (includes Coxeter elements) FACyy g(t) = Wi
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A uniform argument; the decaf version

Theorem

For a complex reflection group W, and a regular element g € W :

et\R|

[(1 — X))@ . q;(x)} )

X=e—tlgl

Here ®(X) is of degree % — Ir(g), with ®(0) =1, and (1 — X) fP(X).

A\

Because deg(®(X)) = (|R| + |R*|)/|g| — Ir(g) is sometimes 0, we have:

Corollary

When W is a complex reflection group and g € W a regular element, then

tIR|
@ If|g| = d, (includes Coxeter elements) FACyy 4(t) = TW (1- e*t‘g|)lR(g)
Ir(g) (| I
@ Generally, we have that RedFacty/(g) = multiple of |g|||/(VT(g))
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials @(X) for W =S5, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
@ (123)(4) : (1 — X)*(1+ X)?
e 552
@ (12345) :(1-X)*
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
e 552
@ (12345) :(1-X)*
@ (1234)(5) :(1—X)}(1+3X+X?)
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
e 552
@ (12345) :(1-X)*
@ (1234)(5) :(1—X)}(1+3X+X?)
0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes

o S4Z

o (1234) :(1-X)?

@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)

o (123)(4): (1 — X)*(1 + X)?
e 552

@ (12345) :(1-X)*

@ (1234)(5) :(1—X)}(1+3X+X?)

0 (13)(24)(5) : (1 — X)*(1 42X +3X? +4X3 +10X* +4X° +3X° +2X" 4 X8)
e 56:

O (123456) (1 - X)°
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials @(X) for W =S5, n=4---6 and all regular classes

o 541

o (1234) :(1-X)?

@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)

@ (123)(4) : (1 — X)*(1+ X)?
e 552

@ (12345) :(1-X)*

@ (1234)(5) :(1—X)}(1+3X+X?)

0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
e 56:

O (123456) (1 - X)°

@ (135)(246)  :(1— X)*(1+4X +5X>+5X* +4X° + X°).
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes

o 541

o (1234) :(1-X)?

@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)

o (123)(4): (1 — X)*(1 + X)?
e 552

@ (12345) :(1-X)*

@ (1234)(5) :(1—X)}(1+3X+X?)

0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
e 56:

O (123456) (1 - X)°

@ (135)(246)  :(1— X)*(1+4X +5X>+5X* +4X° + X°).

@ (14)(25)(36)

(1=X)3(143X+6X2+5X3+18X°+24X° +18X7 +5X°+6X0 43X 4 X1?)

4
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o 541
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
e 552
@ (12345) :(1-X)*
@ (1234)(5) :(1—X)}(1+3X+X?)
0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
e 56:
O (123456) (1 - X)°
@ (135)(246)  :(1— X)*(1+4X +5X>+5X* +4X° + X°).
@ (14)(25)(36)
(1=X)3(143X+6X2+5X3+18X°+24X° +18X7 +5X°+6X10 43X 4 X1?)
0 (12345)(6) :(1— X)*(1+4X+X?)

4
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Can anyone guess what is happening? (AKA Why a duck?)

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o 541
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
e 552
@ (12345) :(1-X)*
@ (1234)(5) :(1—X)}(1+3X+X?)
0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
e 56:
O (123456) (1 - X)°
@ (135)(246)  :(1— X)*(1+4X +5X>+5X* +4X° + X°).
@ (14)(25)(36)
(1=X)3(143X+6X2+5X3+18X°+24X° +18X7 +5X°+6X10 43X 4 X1?)
0 (12345)(6) :(1— X)*(1+4X+X?)

4
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b6

Hecke algebras , an example < arxiv:1811.06566

Example
The generic Hecke algebra of Gys (over the ring Z[xi, - - - y5t]) is:

H(Gx) = (s, t,u| stst = tsts, su= us, tut = utu,
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b6

Hecke algebras , an example < arxiv:1811.06566

Example
The generic Hecke algebra of Gys (over the ring Z[xi, - - - y5t]) is:
H(Gx) = (s, t,u| stst = tsts, su= us, tut = utu,
(S - Xo)(S - X1) =0

(t —yo)(t — y1)(t —y2) =0
(u=yo)(u—y1)(u—y2)=0)
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b6

Hecke algebras , an example < arxiv:1811.06566

Example
The generic Hecke algebra of Gys (over the ring Z[xi, - - - y5t]) is:
H(Gx) = (s, t,u| stst = tsts, su= us, tut = utu,
(S - Xo)(S - X1) =0

(t —yo)(t — y1)(t —y2) =0
(u=yo)(u—y1)(u—y2)=0)

| \

Definition
We consider the 1-parameter specialization {xg, Yo} — x, x1 — —1, and
yi =& yo — €2 with €3 = 1. Then, for some yN = x, K(y)H.(W) is split.
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b6

Hecke algebras , an example < arxiv:1811.06566

Example
The generic Hecke algebra of Gy (over the ring Z[x;, - - - yi']) is:
H(Gx) = (s, t,u| stst = tsts, su= us, tut = utu,
(S — X())(S — X1) =0
(t —yo)(t — y1)(t —y2) =0
(v = yo)(u—y1)(u—y2) =0)

Definition

| \

We consider the 1-parameter specialization {xo, o} — x, x1 — —1, and
yi =& yo — €2 with €3 = 1. Then, for some yN = x, K(y)H.(W) is split.

Definition (Malle's Permutation V)

We write W for the permutation of the irreducible modules of H, (W) induced by
the galois conjugation y — e*™/N .y € Gal (K(y)/K(x)).

A\
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The proof of the technical lemma &  arxiv:1811.06566

et|R| B
FACw g(t) = Wl Z x(1) - x(g71) - exp(—t - cy).
XEW, lg| | cx
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The proof of the technical lemma &  arxiv:1811.06566

et|72\ B
FACw g(t) = Wl Z x(1) - x(g71) - exp(—t - cy).
XEW, lg| | cx

@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™ - xq.
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The proof of the technical lemma &  arxiv:1811.06566

et|72\ B
FACw g(t) = Wl Z x(1) - x(g71) - exp(—t - cy).
XEW, lg| | cx

@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™ - xq.

@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/
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The proof of the technical lemma &  arxiv:1811.06566

et|72\ B
FACw g(t) = Wl Z x(1) - x(g71) - exp(—t - cy).
XEW, lg| | cx

@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™ - xq.

@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/
(i.e. there exists w € B(W) with w? = 7t/ and w — w under B(W) — W)
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The proof of the technical lemma &  arxiv:1811.06566

et|72\ B
FACw g(t) = Wl Z x(1) - x(g71) - exp(—t - cy).
XEW, lg| | cx

@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™ - xq.

@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/
(i.e. there exists w € B(W) with w? = 7t/ and w — w under B(W) — W)

@ [Broue-Michel] The value of a character x, that corresponds to x € w
(after Tits' deformation theorem) is given on roots of the full twist by:

X Tw) = x(w) - x(IRIFAI=e)l/d
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The proof of the technical lemma &  arxiv:1811.06566

etIR| B
FACw.s(t) = 7 > x(1) x(g) exp(—t-cy).
XEW, lg] |
@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™t - xq.
@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/

(i.e. there exists w € B(W) with w? = 7t/ and w — w under B(W) — W)

@ [Broue-Michel] The value of a character x, that corresponds to x € w
(after Tits' deformation theorem) is given on roots of the full twist by:

X Tw) = x(w) - x(IRIFAI=e)l/d

Q@ If wis a regular element of order d and x any character we have:

V(0(w) = exp (25712 - y(w)
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The proof of the technical lemma &  arxiv:1811.06566

etIR| B
FACw.s(t) = 7 > x(1) x(g) exp(—t-cy).
XEW, |gl | ex
@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™t - xq.
@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/
(i.e. there exists w € B(W) with w? = 7t/ and w — w under B(W) — W)
@ [Broue-Michel] The value of a character x, that corresponds to x € w
(after Tits' deformation theorem) is given on roots of the full twist by:

X Tw) = x(w) - x(IRIFAI=e)l/d

Q@ If wis a regular element of order d and x any character we have:

V(0(w) = exp (25712 - y(w)

d S
(5] Ifkfmgél, we have ;\U (x)(w) =0.
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Thank you!
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What do the ¢, look like?

30
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b

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g~1v) = fi(v) Vv € V).
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) := C[V]/(C[V]"™)
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) := C[V]/(C[V]™) = C[VI/{f, -+, fa)
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) = C[V]/(CIVI™) = C[VI/(f, -~ . f) = C[W].
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) = C[V]/(CIVI™) = C[VI/(f, -~ . f) = C[W].

Definition

The fake degree P, (q) := 3" g% of a character y € Wis a polynomial that
records the exponents e;(x) of x. These are the degrees of the graded
components of co(W) that contain copies of x.
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) = C[V]/(CIVI™) = C[VI/(f, -~ . f) = C[W].

Definition

The fake degree P, (q) := 3" g% of a character y € Wis a polynomial that
records the exponents e;(x) of x. These are the degrees of the graded
components of co(W) that contain copies of x.

Theorem (Beynon-Lusztig, Malle, Opdam)

The fake degrees P, (q) satisfy the following palindromicity property:

P.(q) = Py (a71),

where c, are the Coxeter numbers and V is Malle's permutation on lrr(W).
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