On enumerating factorizations in reflection groups.

Theo Douvropoulos

Paris VII, IRIF (ERC CombiTop)

FPSAC Ljubljana, July 5, 2019

The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i 's are transpositions.

The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i 's are transpositions.

For example, the 3¹ factorizations

$$(12)(23) = (123)$$
 $(13)(12) = (123)$ $(23)(13) = (123)$.

The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i 's are transpositions.

For example, the 3¹ factorizations

$$(12)(23) = (123)$$
 $(13)(12) = (123)$ $(23)(13) = (123)$.

Theorem (Deligne-Arnol'd-Bessis)

For a well-generated, complex reflection group W and a Coxeter element c, there are $\frac{h^n n!}{|W|}$ (minimal length) reflection factorizations $t_1 \cdots t_n = c$ where h = |c|.

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{S_n,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{S_n,c}(N) \frac{t^N}{N!}.$$

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{S_n,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{S_n,c}(N) \frac{t^N}{N!}.$$

Theorem (Jackson, '88)

If
$$c = (12 \cdots n) \in S_n$$
, then

$$FAC_{S_n,c}(t) = \frac{e^{t\binom{n}{2}}}{n!} (1 - e^{-tn})^{n-1}.$$

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{S_n,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{S_n,c}(N) \frac{t^N}{N!}.$$

Theorem (Jackson, '88)

If
$$c = (12 \cdots n) \in S_n$$
, then

$$\mathsf{FAC}_{S_n,c}(t) = \frac{e^{t\binom{n}{2}}}{n!} (1 - e^{-tn})^{n-1}.$$

Notice that

$$\left[\frac{t^{n-1}}{(n-1)!}\right] \mathsf{FAC}_{S_n,c}(t) = \frac{1}{n!} \cdot (n)^{n-1} \cdot (n-1)! = n^{n-2}.$$

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{W,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{W,c}(N) \frac{t^N}{N!}.$$

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{W,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{W,c}(N) \frac{t^N}{N!}.$$

Theorem (Chapuy-Stump, '12)

If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

$$\mathsf{FAC}_{W,c}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} (1 - e^{-th})^n.$$

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{W,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{W,c}(N) \frac{t^N}{N!}.$$

Theorem (Chapuy-Stump, '12)

If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

$$\mathsf{FAC}_{W,c}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} (1 - e^{-th})^n.$$

Notice that

$$\left[\frac{t^n}{n!}\right]\mathsf{FAC}_{W,c}(t) = \frac{1}{|W|} \cdot h^n \cdot n! = \frac{h^n n!}{|W|}.$$

Let $\mathcal{C}_2 := \{\mathsf{Id}, c\}$ be the group of order 2 and $\mathcal{R} = \{c\}$. Then,

$$FAC_{C_2,c}(t) = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots$$

Let $\mathcal{C}_2 := \{\mathsf{Id}, c\}$ be the group of order 2 and $\mathcal{R} = \{c\}$. Then,

$$FAC_{C_2,c}(t) = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots$$
$$= \frac{e^t - e^{-t}}{2} = \frac{e^t}{2} \cdot (1 - e^{-2t})$$

And a non-example?

Let $\mathcal{C}_2 := \{\mathsf{Id}, c\}$ be the group of order 2 and $\mathcal{R} = \{c\}$. Then,

$$FAC_{C_2,c}(t) = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots$$
$$= \frac{e^t - e^{-t}}{2} = \frac{e^t}{2} \cdot (1 - e^{-2t})$$

And a non-example?

For $C_n:=\{\operatorname{Id},c,\cdots,c^{n-1}\}$ if we pick factors only from $\mathcal{U}:=\{c\}$, we again have

$$FAC_{C_n,c}(t) = t + \frac{t^{n+1}}{(n+1)!} + \frac{t^{2n+1}}{(2n+1)!} + \cdots$$

Let $\mathcal{C}_2 := \{\mathsf{Id}, c\}$ be the group of order 2 and $\mathcal{R} = \{c\}$. Then,

$$FAC_{C_2,c}(t) = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots$$
$$= \frac{e^t - e^{-t}}{2} = \frac{e^t}{2} \cdot (1 - e^{-2t})$$

And a non-example?

For $C_n:=\{\operatorname{Id},c,\cdots,c^{n-1}\}$ if we pick factors only from $\mathcal{U}:=\{c\}$, we again have

$$\begin{aligned} \mathsf{FAC}_{C_n,c}(t) &= t + \frac{t^{n+1}}{(n+1)!} + \frac{t^{2n+1}}{(2n+1)!} + \cdots \\ &= \frac{1}{n} \cdot \left(e^t + \xi^{-1} \cdot e^{\xi \cdot t} + \xi^{-2} \cdot e^{\xi^2 \cdot t} + \cdots + \xi^{-n+1} \cdot e^{\xi^{n-1} \cdot t} \right) \\ & \text{with } \xi \text{ a n-th root of unity.} \end{aligned}$$

$$[(12) + (13) + (23)] \cdot [(12) + (13) + (23)] = 3 \cdot \mathsf{Id} + 3 \cdot (123) + 3 \cdot (132)$$

$$[(12) + (13) + (23)] \cdot [(12) + (13) + (23)] = 3 \cdot \mathsf{Id} + 3 \cdot (123) + 3 \cdot (132)$$

$$\sum_{N\geq 0} \#\{(t_1,\cdots,t_N)\in \mathcal{R}^N\mid t_1\cdots t_N=c\} \quad \frac{t^N}{N!}$$

$$\left[(12) + (13) + (23) \right] \cdot \left[(12) + (13) + (23) \right] = 3 \cdot \mathsf{Id} + 3 \cdot (123) + 3 \cdot (132)$$

$$\sum_{N\geq 0} \#\{(t_1,\cdots,t_N)\in\mathcal{R}^N\mid t_1\cdots t_N=c\} \cdot \frac{t^N}{N!}$$
$$=\sum_{N\geq 0} \left[c\right] \mathfrak{R}^N \cdot \frac{t^N}{N!}$$

$$[(12) + (13) + (23)] \cdot [(12) + (13) + (23)] = 3 \cdot \mathsf{Id} + 3 \cdot (123) + 3 \cdot (132)$$

$$\sum_{N\geq 0} \#\{(t_1, \cdots, t_N) \in \mathcal{R}^N \mid t_1 \cdots t_N = c\} \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [c] \, \mathfrak{R}^N \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [\operatorname{id}] \, (\mathfrak{R}^N \cdot c^{-1}) \cdot \frac{t^N}{N!}$$

$$[(12) + (13) + (23)] \cdot [(12) + (13) + (23)] = 3 \cdot \mathsf{Id} + 3 \cdot (123) + 3 \cdot (132)$$

$$\sum_{N\geq 0} \#\{(t_1, \cdots, t_N) \in \mathcal{R}^N \mid t_1 \cdots t_N = c\} \quad \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [c] \, \mathfrak{R}^N \quad \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [\operatorname{id}] \, (\mathfrak{R}^N \cdot c^{-1}) \quad \cdot \frac{t^N}{N!}$$

$$\overset{!}{=} \sum_{N\geq 0} \frac{1}{|W|} \operatorname{Tr}_{\mathbb{C}[W]} \left(\mathfrak{R}^N \cdot c^{-1}\right) \quad \cdot \frac{t^N}{N!}$$

$$[(12) + (13) + (23)] \cdot [(12) + (13) + (23)] = 3 \cdot \mathsf{Id} + 3 \cdot (123) + 3 \cdot (132)$$

$$\sum_{N\geq 0} \#\{(t_1, \cdots, t_N) \in \mathcal{R}^N \mid t_1 \cdots t_N = c\} \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [c] \, \mathfrak{R}^N \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [\operatorname{id}] \, (\mathfrak{R}^N \cdot c^{-1}) \cdot \frac{t^N}{N!}$$

$$\stackrel{!}{=!} \sum_{N\geq 0} \frac{1}{|W|} \operatorname{Tr}_{\mathbb{C}[W]} \left(\mathfrak{R}^N \cdot c^{-1}\right) \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi(\mathfrak{R}^N \cdot c^{-1}) \cdot \frac{t^N}{N!}$$

$$= \sum_{N \ge 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi(\mathfrak{R}^N \cdot c^{-1}) \cdot \frac{t^N}{N!}$$

$$\begin{split} &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi \big(\mathfrak{R}^N \cdot c^{-1} \big) \cdot \quad \frac{t^N}{N!} \\ &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \Big(\frac{\chi(\mathfrak{R})}{\chi(1)} \Big)^N \cdot \chi(c^{-1}) \cdot \quad \frac{t^N}{N!} \end{split}$$

$$\begin{split} &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi(\mathfrak{R}^N \cdot c^{-1}) \cdot \quad \frac{t^N}{N!} \\ &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \left(\frac{\chi(\mathfrak{R})}{\chi(1)}\right)^N \cdot \chi(c^{-1}) \cdot \quad \frac{t^N}{N!} \\ &= \frac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp\left(t \cdot \frac{\chi(\mathfrak{R})}{\chi(1)}\right) \end{split}$$

Consider the central element $\mathfrak{R} := \sum_{t \in \mathcal{R}} t$ of the group algebra $\mathbb{C}[W]$.

$$\begin{split} &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi(\mathfrak{R}^N \cdot c^{-1}) \cdot \quad \frac{t^N}{N!} \\ &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \left(\frac{\chi(\mathfrak{R})}{\chi(1)}\right)^N \cdot \chi(c^{-1}) \cdot \quad \frac{t^N}{N!} \\ &= \frac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp\left(t \cdot \frac{\chi(\mathfrak{R})}{\chi(1)}\right) \end{split}$$

Remark (Hurwitz 1901)

Exponential generating functions that enumerate factorizations of the form $a_1 \cdots a_N = g$, where all a_i 's belong to a set C closed under conjugation, are finite (weighted) sums of (scaled) exponentials.

Complex reflection groups and regular elements

A finite subgroup $G \leq GL_n(V)$ is called a *complex reflection group* if it is generated by pseudo-reflections. There are \mathbb{C} -linear maps t that fix a hyperplane (i.e. $\operatorname{codim}(V^t)=1$).

Complex reflection groups and regular elements

A finite subgroup $G \leq GL_n(V)$ is called a *complex reflection group* if it is generated by pseudo-reflections. There are \mathbb{C} -linear maps t that fix a hyperplane (i.e. $\operatorname{codim}(V^t)=1$). Shephard and Todd have classified (irreducible) complex reflection groups into:

- lacktriangledown an infinite 3-parameter family G(r,p,n) of monomial groups
- ② 34 exceptional cases indexed G_4 to G_{37} .

Complex reflection groups and regular elements

A finite subgroup $G \leq GL_n(V)$ is called a *complex reflection group* if it is generated by pseudo-reflections. There are \mathbb{C} -linear maps t that fix a hyperplane (i.e. $\operatorname{codim}(V^t)=1$). Shephard and Todd have classified (irreducible) complex reflection groups into:

- **1** an infinite 3-parameter family G(r, p, n) of monomial groups
- ② 34 exceptional cases indexed G_4 to G_{37} .

Definition

An element $g \in W$ is called ζ -regular if it has a ζ -eigenvector \vec{v} that lies in no reflection hyperplane.

In particular, a *Coxeter element* is defined as a $e^{2\pi i/h}$ -regular element for $h = (|\mathcal{R}| + |\mathcal{A}|)/n$.

You already know this definition of Coxeter elements

Example

• In S_n , the regular elements are $(12\cdots n)$, $(12\cdots n-1)(n)$, and their powers. Indeed, $(\zeta^{n-1},\zeta^{n-2},\cdots,1)$ with $\zeta=e^{2\pi i/n}$ is an eigenvector for $(12\cdots n)$.

You already know this definition of Coxeter elements

Example

- In S_n , the regular elements are $(12\cdots n)$, $(12\cdots n-1)(n)$, and their powers. Indeed, $(\zeta^{n-1},\zeta^{n-2},\cdots,1)$ with $\zeta=e^{2\pi i/n}$ is an eigenvector for $(12\cdots n)$.
- Por real reflection groups:

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

• Well-generated complex reflection groups are classified into two infinite families G(r, 1, n), G(r, r, n) and some exceptional groups among G_4 to G_{37} .

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- Well-generated complex reflection groups are classified into two infinite families G(r, 1, n), G(r, r, n) and some exceptional groups among G_4 to G_{37} .
- ② Characters of the infinite families are *essentially* indexed by tuples of Young diagrams. Most of them evaluate to 0 on Coxeter elements.

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- Well-generated complex reflection groups are classified into two infinite families G(r, 1, n), G(r, r, n) and some exceptional groups among G_4 to G_{37} .
- Characters of the infinite families are essentially indexed by tuples of Young diagrams. Most of them evaluate to 0 on Coxeter elements.
- All complex reflection groups can be described as permutation groups on a set of roots. GAP can then produce their character tables.

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- Well-generated complex reflection groups are classified into two infinite families G(r, 1, n), G(r, r, n) and some exceptional groups among G_4 to G_{37} .
- Characters of the infinite families are essentially indexed by tuples of Young diagrams. Most of them evaluate to 0 on Coxeter elements.
- All complex reflection groups can be described as permutation groups on a set of roots. GAP can then produce their character tables.

Remark

The fact that there is no uniform construction of the irreducible characters Irr(W) makes it is very difficult to have a uniform proof.

A uniform argument; the decaf version

Definition

Given a character $\chi \in \widehat{W}$, we define the Coxeter number c_{χ} as the normalized trace of $\sum_{t \in \mathcal{R}} (\mathbf{1} - t)$. That is,

$$c_\chi := rac{1}{\chi(1)} \cdot ig(|\mathcal{R}| \chi(1) - \chi(\mathfrak{R}) ig) = |\mathcal{R}| - rac{\chi(\mathfrak{R})}{\chi(1)}.$$

A uniform argument; the decaf version

Definition

Given a character $\chi \in \widehat{W}$, we define the Coxeter number c_{χ} as the normalized trace of $\sum_{t \in \mathcal{R}} (1-t)$. That is,

$$c_{\chi} := \frac{1}{\chi(1)} \cdot \big(|\mathcal{R}| \chi(1) - \chi(\mathfrak{R}) \big) = |\mathcal{R}| - \frac{\chi(\mathfrak{R})}{\chi(1)}.$$

The Frobenius Lemma gives then:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}). \tag{1}$$

Definition

Given a character $\chi \in \widehat{W}$, we define the Coxeter number c_{χ} as the normalized trace of $\sum_{t \in \mathcal{R}} (1-t)$. That is,

$$c_\chi := rac{1}{\chi(1)} \cdot ig(|\mathcal{R}| \chi(1) - \chi(\mathfrak{R}) ig) = |\mathcal{R}| - rac{\chi(\mathfrak{R})}{\chi(1)}.$$

The Frobenius Lemma gives then:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}). \tag{1}$$

Lemma

For a cpx reflection group W and a **regular** element $g \in W$, the total contribution in (1) of those characters $\chi \in \widehat{W}$ for which c_{χ} is not a multiple of |g| is 0.

[Just a whiff of coffee]

Definition

Given a character $\chi \in \widehat{W}$, we define the Coxeter number c_{χ} as the normalized trace of $\sum_{t \in \mathcal{R}} (\mathbf{1} - t)$. That is,

$$c_{\chi} := \frac{1}{\chi(1)} \cdot (|\mathcal{R}|\chi(1) - \chi(\mathfrak{R})) = |\mathcal{R}| - \frac{\chi(\mathfrak{R})}{\chi(1)}.$$

The Frobenius Lemma gives then:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}). \tag{1}$$

Lemma

For a cpx reflection group W and a **regular** element $g \in W$, the total contribution in (1) of those characters $\chi \in \widehat{W}$ for which c_{χ} is not a multiple of |g| is 0.

[Just a whiff of coffee] There is a cyclic permutation on the characters, induced by a galois action on the corresponding Hecke characters, that cancels out the contributions in each non-singleton orbit.

Remark

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{|g| \mid c_{\chi}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi})$$

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{|g| \mid c_{\chi}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

Remark

We write $l_R(g)$ for the reflection length of g, i.e. the smallest number k of (quasi-)reflections t_i needed to write $g=t_1\cdots t_k$. This forces

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{l_R(g)-1}}{(l_R(g)-1)!} + (something) \cdot \frac{t^{l_R(g)}}{l_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{|g| \mid c_{\chi}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{|g| \mid c_{\chi}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

- Write $\tilde{\Phi}(X) = a(\alpha_1 X)(\alpha_2 X) \cdots (\alpha_k X)$.

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{l_R(g)-1}}{(l_R(g)-1)!} + (something) \cdot \frac{t^{l_R(g)}}{l_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{|g| \mid c_{\chi}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

- **3** Each part $\alpha_i X = \alpha_i e^{-t|g|} = \alpha_i 1 + t|g| \cdots$

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{|g| \mid c_{\chi}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

- **3** Each part $\alpha_i X = \alpha_i e^{-t|g|} = \alpha_i 1 + t|g| \cdots$ contributes a factor of $\alpha_i 1$ or t|g| on the leading term, depending on whether $\alpha_i = 1$ or not.

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{|g| \mid c_{\chi}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

- **3** Each part $\alpha_i X = \alpha_i e^{-t|g|} = \alpha_i 1 + t|g| \cdots$ contributes a factor of $\alpha_i 1$ or t|g| on the leading term, depending on whether $\alpha_i = 1$ or not.

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Here $\Phi(X)$ is of degree $\frac{|\mathcal{R}|+|\mathcal{R}^*|}{|g|}-I_R(g)$, with $\Phi(0)=1$, and $(1-X)\not|\Phi(X)$.

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Here $\Phi(X)$ is of degree $\frac{|\mathcal{R}|+|\mathcal{R}^*|}{|g|}-I_R(g)$, with $\Phi(0)=1$, and $(1-X)\not|\Phi(X)$.

Because $deg(\Phi(X)) = (|\mathcal{R}| + |\mathcal{R}^*|)/|g| - I_R(g)$ is sometimes 0, we have:

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1-X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Here $\Phi(X)$ is of degree $\frac{|\mathcal{R}|+|\mathcal{R}^*|}{|g|}-I_R(g)$, with $\Phi(0)=1$, and $(1-X)\not|\Phi(X)$.

Because $deg(\Phi(X)) = (|\mathcal{R}| + |\mathcal{R}^*|)/|g| - I_R(g)$ is sometimes 0, we have:

Corollary

When W is a complex reflection group and $g \in W$ a regular element, then

• If $|g| = d_n$ (includes Coxeter elements) $FAC_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot (1 - e^{-t|g|})^{l_R(g)}$

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Here $\Phi(X)$ is of degree $\frac{|\mathcal{R}|+|\mathcal{R}^*|}{|g|}-I_R(g)$, with $\Phi(0)=1$, and $(1-X)\not|\Phi(X)$.

Because $deg(\Phi(X)) = (|\mathcal{R}| + |\mathcal{R}^*|)/|g| - I_R(g)$ is sometimes 0, we have:

Corollary

When W is a complex reflection group and $g \in W$ a regular element, then

- **3** Generally, we have that $RedFact_W(g) = multiple$ of $\frac{|g|^{l_R(g)}(l_R(g))!}{|W|}$

Example

- **o** S₄:
 - $(1234) : (1-X)^3$

Example

- **1** *S*₄:
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$

Example

- \bullet S_4 :
 - \bullet (1234) : $(1-X)^3$
 - **Q** $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$ **Q** $(123)(4): (1-X)^2(1+X)^2$

Example

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24):(1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :

Example

- \bullet S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - (123)(4): $(1-X)^2(1+X)^2$
- \bigcirc S_5 :

 - (12345) : $(1-X)^4$ (1234)(5) : $(1-X)^3(1+3X+X^2)$

Example

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - (1234)(5) : $(1-X)^3(1+3X+X^2)$

Example

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4):(1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - (1234)(5) : $(1-X)^3(1+3X+X^2)$
- \circ S_6 :
 - **1** (123456) : $(1-X)^5$

Example

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- \circ S_5 :
 - **1** (12345) : $(1-X)^4$
 - (1234)(5) : $(1-X)^3(1+3X+X^2)$
- **3** S_6 :
 - \bullet (123456) : $(1-X)^5$
 - **9** (135)(246) : $(1-X)^4(1+4X+5X^2+5X^4+4X^5+X^6)$.

Example

Below are the polynomials $\Phi(X)$ for $W=S_n$, $n=4\cdots 6$ and all regular classes

- \bullet S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4):(1-X)^2(1+X)^2$
- \bigcirc S_5 :
 - **1** (12345) : $(1-X)^4$
 - **2** (1234)(5) : $(1-X)^3(1+3X+X^2)$
 - $(13)(24)(5): (1-X)^2(1+2X+3X^2+4X^3+10X^4+4X^5+3X^6+2X^7+X^8)$
- \circ S_6 :
 - \bullet (123456) : $(1-X)^5$
 - **2** (135)(246) : $(1-X)^4(1+4X+5X^2+5X^4+4X^5+X^6)$.
 - **3** (14)(25)(36)
 - $(1-X)^3(1+3X+6X^2+5X^3+18X^5+24X^6+18X^7+5X^9+6X^{10}+3X^{11}+X^{12})$

FPSAC Liubliana, July 5, 2019

Example

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4):(1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - **2** (1234)(5) : $(1-X)^3(1+3X+X^2)$
- \circ S_6 :

 - **a** (135)(246) : $(1-X)^4(1+4X+5X^2+5X^4+4X^5+X^6)$.
 - **3** (14)(25)(36) :
 - $(1-X)^3(1+3X+6X^2+5X^3+18X^5+24X^6+18X^7+5X^9+6X^{10}+3X^{11}+X^{12})$
 - $(12345)(6) : (1-X)^4(1+4X+X^2)$

Example

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4):(1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - **2** (1234)(5) : $(1-X)^3(1+3X+X^2)$
- \circ S_6 :

 - **a** (135)(246) : $(1-X)^4(1+4X+5X^2+5X^4+4X^5+X^6)$.
 - **3** (14)(25)(36) :
 - $(1-X)^3(1+3X+6X^2+5X^3+18X^5+24X^6+18X^7+5X^9+6X^{10}+3X^{11}+X^{12})$
 - $(12345)(6) : (1-X)^4(1+4X+X^2)$

The generic Hecke algebra of G_{26} (over the ring $\mathbb{Z}[x_0^{\pm 1}, \cdots y_2^{\pm 1}]$) is:

$$\mathcal{H}(G_{26}) = \langle s, t, u \mid stst = tsts, su = us, tut = utu,$$

The generic Hecke algebra of G_{26} (over the ring $\mathbb{Z}[x_0^{\pm 1}, \cdots y_2^{\pm 1}]$) is:

$$\mathcal{H}(G_{26}) = \langle s, t, u \mid stst = tsts, su = us, tut = utu, (s - x_0)(s - x_1) = 0 (t - y_0)(t - y_1)(t - y_2) = 0 (u - y_0)(u - y_1)(u - y_2) = 0 \rangle$$

The generic Hecke algebra of G_{26} (over the ring $\mathbb{Z}[x_0^{\pm 1}, \dots, y_2^{\pm 1}]$) is:

$$\mathcal{H}(G_{26}) = \langle s, t, u \mid stst = tsts, su = us, tut = utu, (s - x_0)(s - x_1) = 0 (t - y_0)(t - y_1)(t - y_2) = 0 (u - y_0)(u - y_1)(u - y_2) = 0 \rangle$$

Definition

We consider the 1-parameter specialization $\{x_0, y_0\} \to x$, $x_1 \to -1$, and $y_1 \to \xi$, $y_2 \to \xi^2$ with $\xi^3 = 1$. Then, for some $y^N = x$, $K(y)\mathcal{H}_x(W)$ is split.

The generic Hecke algebra of G_{26} (over the ring $\mathbb{Z}[x_0^{\pm 1}, \cdots y_2^{\pm 1}])$ is:

$$\mathcal{H}(G_{26}) = \langle s, t, u \mid stst = tsts, su = us, tut = utu, (s - x_0)(s - x_1) = 0 (t - y_0)(t - y_1)(t - y_2) = 0 (u - y_0)(u - y_1)(u - y_2) = 0 \rangle$$

Definition

We consider the 1-parameter specialization $\{x_0, y_0\} \to x$, $x_1 \to -1$, and $y_1 \to \xi$, $y_2 \to \xi^2$ with $\xi^3 = 1$. Then, for some $y^N = x$, $K(y)\mathcal{H}_x(W)$ is split.

Definition (Malle's Permutation Ψ)

We write Ψ for the permutation of the irreducible modules of $\mathcal{H}_x(W)$ induced by the galois conjugation $y \to e^{2\pi i/N} \cdot y \in \mathsf{Gal}\left(K(y)/K(x)\right)$.

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ |g| \ |c_\chi} \chi(1) \cdot \chi(g^{-1}) \cdot \mathsf{exp}(-t \cdot c_\chi).$$

arxiv:1811.06566

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ |g| \ |c_\chi} \chi(1) \cdot \chi(g^{-1}) \cdot \mathsf{exp}(-t \cdot c_\chi).$$

• There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0,1] \ni t \to e^{2\pi i t} \cdot x_0$.

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ |g| \ |c_\chi} \chi(1) \cdot \chi(g^{-1}) \cdot \mathsf{exp}(-t \cdot c_\chi).$$

- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- **②** Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π' .

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ |g| \ |c_\chi} \chi(1) \cdot \chi(g^{-1}) \cdot \mathsf{exp}(-t \cdot c_\chi).$$

- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- ② Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π^l . (i.e. there exists $\mathbf{w} \in B(W)$ with $\mathbf{w}^d = \pi^l$ and $\mathbf{w} \to w$ under $B(W) \to W$)

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ |g| \ |c_\chi} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_\chi).$$

- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- ② Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π^l . (i.e. there exists $\mathbf{w} \in B(W)$ with $\mathbf{w}^d = \pi^l$ and $\mathbf{w} \to w$ under $B(W) \to W$)
- **③** [Broue-Michel] The value of a character χ_x that corresponds to $\chi \in \widehat{W}$ (after Tits' deformation theorem) is given on roots of the full twist by:

$$\chi_{\mathsf{x}}(T_{\mathsf{w}}) = \chi(\mathsf{w}) \cdot \mathsf{x}^{(|\mathcal{R}| + |\mathcal{A}| - c_{\chi})I/d}$$

arxiv:1811.06566

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ |g| \ |c_{\chi}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}).$$

- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- ② Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π^l . (i.e. there exists $\mathbf{w} \in B(W)$ with $\mathbf{w}^d = \pi^l$ and $\mathbf{w} \to w$ under $B(W) \to W$)
- **③** [Broue-Michel] The value of a character χ_x that corresponds to $\chi \in \widehat{W}$ (after Tits' deformation theorem) is given on roots of the full twist by:

$$\chi_{x}(T_{w}) = \chi(w) \cdot x^{(|\mathcal{R}| + |\mathcal{A}| - c_{\chi})I/d}$$

1 If w is a regular element of order d and χ any character we have:

$$\Psi(\chi)(w) = \exp\left(2\pi i \cdot \frac{lc_{\chi}}{d}\right) \cdot \chi(w)$$

arxiv:1811.06566

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ |g| \ |c_\chi} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_\chi).$$

- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- ② Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π^l . (i.e. there exists $\mathbf{w} \in B(W)$ with $\mathbf{w}^d = \pi^l$ and $\mathbf{w} \to w$ under $B(W) \to W$)
- **③** [Broue-Michel] The value of a character χ_x that corresponds to $\chi \in \widehat{W}$ (after Tits' deformation theorem) is given on roots of the full twist by:

$$\chi_{x}(T_{\mathbf{w}}) = \chi(\mathbf{w}) \cdot x^{(|\mathcal{R}| + |\mathcal{A}| - c_{\chi})I/d}.$$

• If w is a regular element of order d and χ any character we have:

$$\Psi(\chi)(w) = \exp\left(2\pi i \cdot \frac{lc_{\chi}}{d}\right) \cdot \chi(w)$$

• If $k = \frac{d}{\gcd(c_\chi, d)} \neq 1$, we have $\sum_{i=1}^k \Psi^k(\chi)(w) = 0$.

Thank you!

What do the c_{χ} look like?

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$).

Fake degree palindromicity \(\frac{1}{2}\)

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle$$

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle = \mathbb{C}[V]/\langle f_1, \cdots, f_n \rangle$$

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle = \mathbb{C}[V]/\langle f_1, \cdots, f_n \rangle \cong \mathbb{C}[W].$$

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle = \mathbb{C}[V]/\langle f_1, \cdots, f_n \rangle \cong \mathbb{C}[W].$$

Definition

The fake degree $P_{\chi}(q) := \sum q^{e_i(\chi)}$ of a character $\chi \in \widehat{W}$ is a polynomial that records the *exponents* $e_i(\chi)$ of χ . These are the degrees of the graded components of $\operatorname{co}(W)$ that contain copies of χ .

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle = \mathbb{C}[V]/\langle f_1, \cdots, f_n \rangle \cong \mathbb{C}[W].$$

Definition

The fake degree $P_{\chi}(q) := \sum q^{e_i(\chi)}$ of a character $\chi \in \widehat{W}$ is a polynomial that records the *exponents* $e_i(\chi)$ of χ . These are the degrees of the graded components of $\operatorname{co}(W)$ that contain copies of χ .

Theorem (Beynon-Lusztig, Malle, Opdam)

The fake degrees $P_{\chi}(q)$ satisfy the following palindromicity property:

$$P_{\chi}(q)=q^{c_{\chi}}P_{\Psi(\chi^*)}(q^{-1}),$$

where c_{χ} are the Coxeter numbers and Ψ is Malle's permutation on Irr(W).