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Joint work with: A. Knutson (Cornell), P. Zinn-Justin (Melbourne) Puzzles A puzzle of size 2n ﬁ for A, i, v € 0K12" is a tiling by

the puzzle pieces
Grassmannians and Schubert calculus | | - |
ﬁ m QQ , their rotations, and the equivariant piece .

Grassmannians We are interested in the cohomology pullback of

Theorem (Knutson-Tao '03, many extensions since)

Gr(k,2n) :={V CcC?"| dimV = k} = GL,,/P For A, € 0¥12"% the product of S, and S, in H:-(Gr(k,2n)) is given by
(

\
TL Si-S, = Z Z{V(P) . puzzles P with boundary%k} S,
yeQk12n-k \" P y
SpGr(k,2n) .={VcC?*|dmV=k,VCV} =S PNS
pGr(k,2n) = { | dim = SPan/ (P10 SP2n) e v(P) — [T, vi(p), and for the individual pieces
General setup: partial flag varieties > v( ZX) _ 1
» (G an algebraic group over C
» fixapinning TcBc G,W=Wg=N(T)/T,
» P D B be a parabolic, then G/P is a smooth projective variety,
» T-fixed points: (G/P)" = W/Wp = Wp\W. Example: Sp101 - So101 = Sot10 + S1001 + (V2 — ¥3)Soto1
For G of type A/B/C/D and P maximal, G/P is a Grassmannian.

Our case: Take o : GLoy — Glon, X — J7H( XY, (involution)
where J = antidiagonal matrix with n (=1)’s in NE, n 1’s in SW.
Take Spo, = GLJ ., P = PgL,, parabolic of type (k,2n - k), (k < n).
Grassmann duality
Schubert classes For r € Wp\W, the corresp. Schubert class is |There is a ring isomorphism (from a homeo. of Grassmannians):

> V(YY) =Yi— Y €Zys,...,Yon| = H7(pt), if the rhombus sides

face the i-th and j-th positions at the bottom of the puzzle.

S, :=|B 1 'P/P| € H}(G/P). H:(Gr(k,2n)) = H:(Gr(2n - k,2n)), S, S;
Then {S;}ew,\w freely generate H3(G/P) as an H3(pt)-module. Sp+ Sy € Spt Oy
Dual Zg reflect though vertical axis
Classical question: Determine the structure constants, A T - and swap 0 and 1
S-S, = Z cr.S, Question: What do self-dual puzzles count?
Note: If G/P = Gr(k n) then (In I‘I>l< Not H*) the CV are the Main Theorem
eac/{ﬂ
Littlewood-Richardson coefficients for GLx : V, ® V, = DV, Theorem (H-Knutson-Zinn-Justin *18)

E.g. In Gr(2,4), (H7(pt) = Z[y1, Y2, ¥3. ya]): For every S, € H:,(Gr(k,2n)), 2 € 012" % we get in H%,(SpGr(k, 2n))
S-S =8 +S8 +(y2-y3)S  (inHy) C(S) = ), | ) ,(v(P) : self-dual puzzles P with boundary

ve(10)7k{0,1}k \ P

Cohomology rings Consider the involution A — A reversing A and |where ((i, j) — rhombus) > Zi— 2, Zi = Yi, OF —Yan 1 fi < n,orn+1<i<2n.
switching 0 < 1. FOFT(V) = (V)_/ with 10’s turned into 1’8), we have|Example: L*(S110101) — ()/2 — }/3)81(),1,() + 81031,1 + 81,10,0

(v € (10)"%{0, 1}¥} = (SpGr(k,2n))"" « N SpGr(k,2n)

5 [

(A e 0K127K} = (Gr(k,2n))T" —" 3 Gr(k, 2n)

This, together with the inclusion T" = T? — T = T2", gives

H;(SpGr(k,2n)"") <—— H7.(SpGr(k,2n))

Idea of proof

DT ‘*T Tensor calculus Consider the puzzle labels {0, 10, 1} as indexing
H;n(Gr(k,2n)") <——— H;.(Gr(k,2n)) bases for three spaces C?.,, C7,, C2, (Green, Red, Blue).

| 1 We get a scattering diagram by taklng the graph dual of an
and since each £ is injective (Kirwan), we can compute on the left.|,n1abeled size 2n half- ouzzle triangle 2n/ with assigned

“spectral parameters” y1, ..., ¥n, —Vn, ..., —y1 0n the Northwest

Main question: *(S,) = %, ¢S, cy, =17 side. Associate
» Pragacz '00: (building on work of Stembridge) positive tableau | » to a crossing with parameters a and b, a linear map s
formulee for H*(Gr(n, 2n)) C D YN/

Rep(a—b) = < :CL®C} — C}eC2;

» to a wall-bounce of a strand W|th parameter a, , 1%
2
Y1

» Coskun '11: positive geometric rule for H*(Gr(k, 2n))

Puzzles Ke(a) = 2% C% — C?fy (and a — —a);

Yil Yol Y3l Ys

Note: We interchangeably consider binary strings 7 € 012" (i.e. | » 10 a trivalent vertex with both parameters a,
in We\W)and = € W/Ws. U(a) = >¢ : CLeC} — C3.
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Gluing strands corresponds to composing the maps, so the whole |For 4, u,v € Wp\W as above, we denote
2n/ corresponds to a linear map ¢ (C2)%e" — (CR)®". 2 ~ the (v, 1) matrix entry for the scattering diagram
M = - 71
We ask that these maps satisfy the following identities: * map coming from a reduced word for x
1. The Yang-Baxter equatlon (With colors GRR/GGR/GGG/BBB)|BY the proposition, when v = wg/p this gives S|,
Uz , U3 Uz \ U3
>§< Proof of the main theorem.
us 7o\ U us “up | U In H3(pt), we have the following equality

2. Swapping of two trivalent vertices.

Uo U1 Uo | UAq

3. The reflection equation.

In the second and fourth equality, the strings 4 and v have content
0%12"-k and (10)"% {0, 1}* respectively, and all other terms of the
sum vanish.

KB(U1) O UGR(U1) O (ld ®K3(—U1))

_ UGR(—U1) O (ld ®K3(U1)) O RG(;(2U1)
Puzzle values: Let P range among all (self-dual) half-puzzles with

labels 7, where 1 € 012K and v € (10)"%{0, 1}*. Then,
: B Mgin 1
the (v, 1) matrix entry of & = >’ p v(P) (The;rem c).

The AJS/Billey formula: Computing restriction to fixed points

Proposition (AJS/Billey using scattering diagrams)

Let (A, u = strings in 0,10,1 < cosets Wp\W), W of type A/C, P maximal. Appendix: Example of a K-matrix.
To compute S,|,: make a scattering diagram by

» taking a reduced word for the shortest lift 7~ ; 1 PN

» for each crossing, compose with Rgg(= RRgRr) Ky (a) : } _ { ImI=,

» (in type C) for each wall-reflection, compose with Kg. _ 2a if (i,j) = (1,0)
Then S,|, is the (wg,p, A) Mmatrix entry of the resulting map, where /

wer=0...01...1€01?"*  for G/P = Gr(k,2n),
wspgr =0...010...10 € 0(10)"*  for G/P = SpGr(k, 2n).

|
Example For G = Sps and Q = s,5354, the scattering diagram is Thank You!

(Res(y1 — ys) ®1d) o (1d°% ® Kp(yz2)) © (Id ®Rss(y2 - ¥3)) :
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