Alcove random walks and k-Schur functions

Cédric Lecouvey and Pierre Tarrago

IDP (Tours) and LPSM (Paris)

FPSAC 2019

Lecouvey-Tarrago (IDP (Tours) and LPSM (Paris)) Alcove random walks and k-Schur functions

・ロト ・回ト ・ヨト

- Intere exist natural generalizations of the Young lattice.
- Their extremal harmonic functions make appear interesting families of polynomials.
- These harmonic functions also control the behavior of certain random walks.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

I. Combinatorics

A partition of rank *I* is a nonincreasing sequence $\lambda = (\lambda_1 \ge \cdots \ge \lambda_m) \in \mathbb{Z}_{\ge 0}$ s.t. $\lambda_1 + \cdots + \lambda_m = I$.

The partition λ is encoded by its Young diagram. Each cell c of λ has a hook length h(c). Let hook $(\lambda) = \lambda_1 + d - 1$ where $d = \max(i \mid \lambda_i > 0)$.

Example

Fix $k \ge 1$ an integer A (k+1)-core is a partition λ with no hook length equal to k+1. Write $|\lambda|_k$ for the number of cells with hook length less or equal to k.

Observe λ is a (k+1)-core i.f.f $tr(\lambda)$ is.

・ロト ・回ト ・ヨト

A partition is k-bounded when its parts are less or equal to k. For k fixed, there is a bijection

$$\{\lambda \mid k+1\text{-core with } |\lambda|_k = l\} \stackrel{c}{\underset{c^{-1}}{\leftarrow}} \{\mu \mid k\text{-bounded of rank } l\}$$

obtained by deleting the cells with hook lengths greater than k + 1 and next left align.

イロト イヨト イヨト イ

The map $\iota = \mathfrak{c}^{-1} \circ tr \circ \mathfrak{c}$ is an involution on the *k*-bounded partitions.

Let \mathcal{Y}^k be the graph with vertices the k-bounded partitions and arrows $\lambda \to \mu$ when

• μ is obtained by adding one cell to λ

Observe that $\lim_{k\to+\infty} \mathcal{Y}^k = \mathcal{Y}$ is the Young lattice of ordinary partitions.

(a)

The map $\iota = \mathfrak{c}^{-1} \circ tr \circ \mathfrak{c}$ is an involution on the *k*-bounded partitions.

Let \mathcal{Y}^k be the graph with vertices the k-bounded partitions and arrows $\lambda \to \mu$ when

- μ is obtained by adding one cell to λ
- $\iota(\mu)$ is obtained by adding one cell to $\iota(\lambda)$.

Observe that $\lim_{k \to +\infty} \mathcal{Y}^k = \mathcal{Y}$ is the Young lattice of ordinary partitions.

イロト イポト イヨト イヨ

イロン イロン イヨン イヨン

II. Harmonic functions

A function $f:\mathcal{Y}^k o \mathbb{R}_{\geq 0}$ is harmonic when $f(\emptyset) = 1$ and for any $\lambda \in \mathcal{Y}^k$

$$f(\lambda) = \sum_{\lambda \to \mu} f(\mu).$$

Positive harmonic functions parametrize central Markov chains on \mathcal{Y}^k : the transition matrix associated to f is

$$\Pi(\lambda,\mu) = \frac{f(\mu)}{f(\lambda)} \mathbf{1}_{\lambda \to \mu}$$

and

$$\Pi(\lambda^{(1)},\lambda^{(2)},\ldots,\lambda^{(l)}) = \frac{f(\lambda^{(l)})}{f(\lambda^{(1)})}$$

only depends on the ends of the trajectory $\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(l)}.$

Problem (Minimal boundary of \mathcal{Y}^k)

What are the extremal nonnegative harmonic functions on \mathcal{Y}^k ?

The graph \mathcal{Y}^k is multiplicative : there exists a \mathbb{R} -algebra \mathcal{A} with a distinguished basis $\mathbb{B} = \{s_{\lambda}^{(k)} \mid \lambda \in \mathcal{Y}^k\}$ s.t.

•
$$s_{\emptyset}^{(k)} = 1$$

・ロト ・日下・ ・ ヨト・

Problem (Minimal boundary of \mathcal{Y}^k)

What are the extremal nonnegative harmonic functions on \mathcal{Y}^k ?

The graph \mathcal{Y}^k is multiplicative : there exists a \mathbb{R} -algebra \mathcal{A} with a distinguished basis $\mathbb{B} = \{s_{\lambda}^{(k)} \mid \lambda \in \mathcal{Y}^k\}$ s.t.

•
$$s_{\emptyset}^{(k)} = 1$$

• $s_{\lambda}^{(k)} s_{1}^{(k)} = \sum_{\lambda \to \mu} s_{\mu}^{(k)}$

・ロト ・日下・ ・ ヨト・

Problem (Minimal boundary of \mathcal{Y}^k)

What are the extremal nonnegative harmonic functions on \mathcal{Y}^k ?

The graph \mathcal{Y}^k is multiplicative : there exists a \mathbb{R} -algebra \mathcal{A} with a distinguished basis $\mathbb{B} = \{s_{\lambda}^{(k)} \mid \lambda \in \mathcal{Y}^k\}$ s.t.

• $s_{\emptyset}^{(k)} = 1$ • $s_{\lambda}^{(k)} s_{1}^{(k)} = \sum_{\lambda \to \mu} s_{\mu}^{(k)}$

• $s_{\lambda}^{(k)} s_{\mu}^{(k)}$ decomposes on \mathbb{B} with nonnegative coefficients (only a geometric proof by Lam 2008).

イロト イ団ト イヨト イヨト

Theorem (Kerov-Vershik 1989)

The extremal harmonic functions on \mathcal{Y}^k correspond to the morphisms $\theta : \mathcal{A} \to \mathbb{R}$ s.t. $\theta(s_1^{(k)}) = 1$ and $\theta(s_\lambda^{(k)}) \ge 0$ for any $\lambda \in \mathcal{Y}^k$ by setting

$$f(\lambda) = heta(s_{\lambda}^{(k)})$$

Let $\Lambda = Sym_{\mathbb{R}}(x_1, \ldots, x_n, \ldots)$ the algebra of symmetric functions.

Recall that the

$$h_{a} = \sum_{1 \leq i_{1} \leq \cdots \leq i_{a}} x_{i_{1}} \cdots x_{i_{a}}$$

with $a \geq 1$ algebraically generate Λ

Set $\mathcal{A} = \langle h_1, \ldots, h_k \rangle$ and the $s_{\lambda}^{(k)}, \lambda \in \mathcal{Y}^{(k)}$ are the *k*-Schur functions of Lapointe, Lascoux and Morse (2003). They are defined from the multiplication $s_{\lambda}^{(k)} \times h_a$ (*k*-Pieri rule) which is encoded in $\mathcal{Y}^{(k)}$

We have $\lim_{k \to +\infty} s_{\lambda}^{(k)} = s_{\lambda}$ the Schur function associated to λ .

<ロ> (日) (日) (日) (日) (日)

When $hook(\lambda) \leq k$, we have $s_{\lambda}^{(k)} = s_{\lambda}$.

 $\lambda \in \mathcal{Y}^k$ is k-irreducible when λ does not contain any rectangle $R_a = (k - a + 1) \times a$ for $a = 1, \dots, k$.

Theorem (Lapointe, Morse (2007))

For any $\lambda \in \mathcal{P}^{(k)}$, there is a unique factorization

$$s_{\lambda}^{(k)}=s_{R_1}^{p_1}\cdots s_{R_k}^{p_k}s_{\kappa}^{(k)}$$

with $\kappa \in \mathcal{P}_{irr}^{(k)}$ (the set of k-irreducible partitions).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

For k = 3 we have

We have
$$\operatorname{card}(\mathcal{P}_{\operatorname{irr}}^{(k)}) = k!$$

Example
For $k = 3$, there are 6 irreducible 3-restricted partitions

 $\emptyset, \square, \square, \square, \square, \square, \square.$

Thus, the relevant morphisms θ are those s.t.

$$\left\{ \begin{array}{l} \theta(s_1) = 1\\ \theta(s_{R_a}) \geq 0 \text{ for any } a = 1, \dots, k\\ \theta(s_{\kappa}^{(k)}) \geq 0 \text{ for any } \kappa \in \mathcal{P}_{\mathrm{irr}}^{(k)}. \end{array} \right.$$

・ロト ・日下 ・日下

From the rectangle factorization, one can write for any $\kappa \in \mathcal{P}_{irr}^{(k)}$

$$s_{\kappa}^{(k)} \cdot s_{(1)} = \sum_{\kappa o \mu} s_{\mu}^{(k)} = \sum_{\kappa' \in \mathcal{P}_{\mathrm{irr}}^{(k)}} m_{\kappa,\kappa'}(s_{\mathcal{R}_1},\ldots,s_{\mathcal{R}_k}) s_{\kappa'}^{(k)}$$

where $m_{\kappa,\kappa'}(s_{R_1},\ldots,s_{R_k}) \in \mathbb{Z}_{\geq 0}[s_{R_1},\ldots,s_{R_k}]$ define a $k! \times k!$ matrix $M_k(s_{R_1},\ldots,s_{R_k})$.

Theorem (L, Tarrago (2018))

By specializing $s_{R_a} = r_a \in \mathbb{R}_{\geq 0}$, $M_k(r_1, \ldots, r_k)$ is irreducible i.f.f $r_a + r_{a+1} > 0$ for any $a = 1, \ldots, k - 1$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

For k = 3, on gets

$$M_3=\left(egin{array}{cccccccc} 0&0&s_{R_1}&s_{R_3}&s_{R_2}&0\ 1&0&0&0&s_{R_2}\ 0&1&0&0&0&s_{R_3}\ 0&1&0&0&0&s_{R_1}\ 0&0&1&1&0&0\ 0&0&0&0&1&0 \end{array}
ight)$$

イロン イロン イヨン イヨン

Remind $\mathcal{R} = \mathbb{R}[s_{R_1}, \dots, s_{R_k}]$ is a subalgebra of \mathcal{A} .

Let ${\mathbb L}$ and ${\mathbb K}$ be the fraction fields of ${\mathcal A}$ and ${\mathcal R},$ respectively.

Theorem (L, Tarrago (2018))

 \mathbb{L} is a separable and algebraic extension of \mathbb{K} of degree k!. Moreover $\mathbb{L} = \mathbb{K}[s_1]$ i.e. s_1 is a primitive element in \mathbb{L} .

Corollary

There exists a polynomial $\Delta \in \mathcal{R}$ s.t. each polynomial $s_{\kappa}^{(k)}$ with $\kappa \in \mathcal{P}_{irr}^{(k)}$ can be written on the form

$$m{s}^{(k)}_{\kappa} = rac{1}{\Delta} m{P}_{\kappa}(m{s}_1)$$

with $P_{\kappa} \in \mathcal{R}[X]$.

<ロト </p>

For
$$i = 1, \ldots, k-1$$
 set $\alpha_i = e_i - e_{i+1}$ in \mathbb{R}^k and put $\alpha_0 = -(\alpha_1 + \cdots + \alpha_k)$.

There is a tesselation of \mathbb{R}^k by alcoves supported by the hyperplanes

$$H_{i,m} = \{ v \in \mathbb{R}^k \mid (v, \alpha_i) = m \}$$

with $i = 0, \ldots, k - 1$ and $m \in \mathbb{Z}$.

The dominant alcoves are those in the cone delimited by the hyperplanes $H_{\alpha_i^{\vee}} = H_{i,0}$.

<ロ> <同> <同> <同> < 同> <

Figure: A reduced walk on dominant alcoves for k = 2

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 - のへで

The dominant alcoves are in bijection with the *k*-bounded partitions.

A random central Markov chain on \mathcal{Y}^k gives a random central alcove walk : it can only cross each hyperplane once.

Different random alcove walks have been considered by Lam (2015) which are central only when

$$k=2$$
, $\theta(s_{R_1})=\theta(h_2)=rac{1}{2}$ and $\theta(s_{R_2})=\theta(e_2)=rac{1}{2}.$

Image: A math a math

Consider the simplex $S_k = \{(v_1, \dots, v_k) \in \mathbb{R}_{\geq 0}^k \mid v_1 + \dots + v_k = 1\}.$

Theorem (L, Tarrago (2018))

On the morphisms θ : A → ℝ nonnegative on the k-Schur functions are uniquely determined by the θ(s_{R_a}) = r_a ≥ 0, a = 1,..., k.

<ロト </p>

Consider the simplex $S_k = \{(v_1, \dots, v_k) \in \mathbb{R}_{\geq 0}^k \mid v_1 + \dots + v_k = 1\}.$

Theorem (L, Tarrago (2018))

- On The morphisms θ : A → ℝ nonnegative on the k-Schur functions are uniquely determined by the θ(s_{R_a}) = r_a ≥ 0, a = 1,..., k.
- One of the θ(s_κ), κ ∈ P_{irr} can be essentially computed from the θ(s_{R_a}), a = 1,..., k by applying Perron Frobenius theorem to the matrix M_k and using continuity arguments.

<ロト <回ト < 回ト < 回ト

Consider the simplex $S_k = \{(v_1, \dots, v_k) \in \mathbb{R}_{\geq 0}^k \mid v_1 + \dots + v_k = 1\}.$

Theorem (L, Tarrago (2018))

- On The morphisms θ : A → ℝ nonnegative on the k-Schur functions are uniquely determined by the θ(s_{R_a}) = r_a ≥ 0, a = 1,..., k.
- One of the θ(s_κ), κ ∈ P_{irr} can be essentially computed from the θ(s_{R_a}), a = 1,..., k by applying Perron Frobenius theorem to the matrix M_k and using continuity arguments.
- The minimal boundary of 𝒱_k is homeomorphic to 𝔅_k (recall the additional condition θ(h₁) = 1).

Consider the simplex $S_k = \{(v_1, \dots, v_k) \in \mathbb{R}_{\geq 0}^k \mid v_1 + \dots + v_k = 1\}.$

Theorem (L, Tarrago (2018))

- On The morphisms θ : A → ℝ nonnegative on the k-Schur functions are uniquely determined by the θ(s_{R_a}) = r_a ≥ 0, a = 1,..., k.
- Or The θ(s_κ), κ ∈ P_{irr} can be essentially computed from the θ(s_{R_a}), a = 1,..., k by applying Perron Frobenius theorem to the matrix M_k and using continuity arguments.
- The minimal boundary of 𝒱_k is homeomorphic to 𝔅_k (recall the additional condition θ(h₁) = 1).
- This permits to recover Rietsch's parametrization (2002) of totally nonnegative unitriangular Toeplitz matrices