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0. General considerations

1 There exist natural generalizations of the Young lattice.
2 Their extremal harmonic functions make appear interesting families of
polynomials.

3 These harmonic functions also control the behavior of certain random walks.
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I. Combinatorics

A partition of rank l is a nonincreasing sequence λ = (λ1 � � � � � λm) 2 Z�0
s.t. λ1 + � � �+ λm = l .

The partition λ is encoded by its Young diagram.
Each cell c of λ has a hook length h(c).
Let hook(λ) = λ1 + d � 1 where d = max(i j λi > 0g.

Example

λ = (5, 5, 3, 3, 1)�

| | | |
|
|
|

with h(1, 2) = 7, hook(λ) = 9 and

transposed partition tr(λ) = (5, 4, 4, 2, 2)�
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Fix k � 1 an integer
A (k + 1)-core is a partition λ with no hook length equal to k + 1.
Write jλjk for the number of cells with hook length less or equal to k.

Example
The partition

λ =

� �
� �

� �
� �

�
�

is a 4-core with jκj3 = 10 (but not a 3-core).

Observe λ is a (k + 1)-core i.f.f tr(λ) is.
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A partition is k-bounded when its parts are less or equal to k.
For k �xed, there is a bijection

fλ j k + 1-core with jλjk = lg
c
�
c�1
fµ j k-bounded of rank lg

obtained by deleting the cells with hook lengths greater than k + 1 and next left
align.

Example

λ =

� �
� �

� �
� �

�
�

�
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The map ι = c�1 � tr � c is an involution on the k-bounded partitions.

Let Yk be the graph with vertices the k-bounded partitions and arrows λ ! µ
when

µ is obtained by adding one cell to λ

ι(µ) is obtained by adding one cell to ι(λ).

Observe that limk!+∞ Yk = Y is the Young lattice of ordinary partitions.
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The graph Y2
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II. Harmonic functions

A function f : Yk ! R�0 is harmonic when f (∅) = 1 and for any λ 2 Yk

f (λ) = ∑
λ!µ

f (µ).

Positive harmonic functions parametrize central Markov chains on Yk : the
transition matrix associated to f is

Π(λ, µ) =
f (µ)
f (λ)

1λ!µ

and

Π(λ(1),λ(2), . . . ,λ(l )) =
f (λ(l ))

f (λ(1))

only depends on the ends of the trajectory λ(1),λ(2), . . . ,λ(l ).
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Problem (Minimal boundary of Yk)
What are the extremal nonnegative harmonic functions on Yk ?

The graph Yk is multiplicative : there exists a R-algebra A with a distinguished
basis B = fs(k )λ j λ 2 Ykg s.t.

s(k )∅ = 1

s(k )λ s(k )1 = ∑λ!µ s
(k )
µ

s(k )λ s(k )µ decomposes on B with nonnegative coe¢ cients (only a geometric
proof by Lam 2008).
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Theorem (Kerov-Vershik 1989)

The extremal harmonic functions on Yk correspond to the morphisms θ : A ! R

s.t. θ(s(k )1 ) = 1 and θ(s(k )λ ) � 0 for any λ 2 Yk by setting

f (λ) = θ(s(k )λ )
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III. k-Schur functions

Let Λ = SymR(x1, . . . , xn , . . .) the algebra of symmetric functions.

Recall that the
ha = ∑

1�i1�����ia
xi1 � � � xia

with a � 1 algebraically generate Λ

Set A =hh1, . . . , hk i and the s
(k )
λ ,λ 2 Y (k ) are the k-Schur functions of

Lapointe, Lascoux and Morse (2003).

They are de�ned from the multiplication s(k )λ � ha (k-Pieri rule) which is encoded
in Y (k )

We have limk!+∞ s
(k )
λ = sλ the Schur function associated to λ.
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When hook(λ) � k, we have s(k )λ = sλ.

λ 2 Yk is k-irreducible when λ does not contain any rectangle
Ra = (k � a+ 1)� a for a = 1, . . . , k.

Theorem (Lapointe, Morse (2007))

For any λ 2 P (k ), there is a unique factorization

s(k )λ = sp1R1 � � � s
pk
Rk
s(k )κ

with κ 2 P (k )irr (the set of k-irreducible partitions).
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Example
For k = 3 we have

R1 = , R2 = , R3 =

and for

λ = (3, 2, 2, 2, 1, 1) =

z z z
~ ~
~ ~
� �
�
�

s(3)λ = s(3)s(2,2)s
(3)
(2,1,1).
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We have card(P (k )irr ) = k !

Example
For k = 3, there are 6 irreducible 3-restricted partitions

∅, , , , , .

Thus, the relevant morphisms θ are those s.t.8<:
θ(s1) = 1
θ(sRa ) � 0 for any a = 1, . . . , k
θ(s(k )κ ) � 0 for any κ 2 P (k )irr .
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From the rectangle factorization, one can write for any κ 2 P (k )irr

s(k )κ � s(1) = ∑
κ!µ

s(k )µ = ∑
κ02P (k )irr

mκ,κ0(sR1 , . . . , sRk )s
(k )
κ0

where mκ,κ0(sR1 , . . . , sRk ) 2 Z�0 [sR1 , . . . , sRk ] de�ne a k !� k ! matrix
Mk (sR1 , . . . , sRk ).

Theorem (L, Tarrago (2018))

By specializing sRa = ra 2 R�0, Mk (r1, . . . , rk ) is irreducible i.f.f ra + ra+1 > 0
for any a = 1, . . . , k � 1.
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Example
For k = 3, on gets

M3 =

0BBBBBB@
0 0 sR1 sR3 sR2 0
1 0 0 0 0 sR2
0 1 0 0 0 sR3
0 1 0 0 0 sR1
0 0 1 1 0 0
0 0 0 0 1 0

1CCCCCCA
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IV. Primitive element theorem

Remind R = R[sR1 , . . . , sRk ] is a subalgebra of A.

Let L and K be the fraction �elds of A and R, respectively.

Theorem (L, Tarrago (2018))

L is a separable and algebraic extension of K of degree k !. Moreover L = K[s1 ]
i.e. s1 is a primitive element in L.

Corollary

There exists a polynomial ∆ 2 R s.t. each polynomial s(k )κ with κ 2 P (k )irr can be
written on the form

s(k )κ =
1
∆
Pκ(s1)

with Pκ 2 R[X ].
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V. Reduced alcove walks of type A

For i = 1, . . . , k � 1 set αi = ei � ei+1 in Rk and put α0 = �(α1 + � � �+ αk ).

There is a tesselation of Rk by alcoves supported by the hyperplanes

Hi ,m = fv 2 Rk j (v , αi ) = mg

with i = 0, . . . , k � 1 and m 2 Z.

The dominant alcoves are those in the cone delimited by the hyperplanes
Hα_i

= Hi ,0.
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Figure: A reduced walk on dominant alcoves for k = 2
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The dominant alcoves are in bijection with the k-bounded partitions.

A random central Markov chain on Yk gives a random central alcove walk : it can
only cross each hyperplane once.

Di¤erent random alcove walks have been considered by Lam (2015) which are
central only when

k = 2, θ(sR1 ) = θ(h2) =
1
2
and θ(sR2 ) = θ(e2) =

1
2
.
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VI. Main results

Consider the simplex Sk = f(v1, . . . , vk ) 2 Rk�0 j v1 + � � �+ vk = 1g.

Theorem (L, Tarrago (2018))

1 The morphisms θ : A ! R nonnegative on the k-Schur functions are
uniquely determined by the θ(sRa ) = ra � 0, a = 1, . . . , k.

2 The θ(sκ), κ 2 Pirr can be essentially computed from the
θ(sRa ), a = 1, . . . , k by applying Perron Frobenius theorem to the matrix Mk
and using continuity arguments.

3 The minimal boundary of Yk is homeomorphic to Sk (recall the additional
condition θ(h1) = 1).

4 This permits to recover Rietsch�s parametrization (2002) of totally
nonnegative unitriangular Toeplitz matrices
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