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PLANAR MAPS
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ROOTED PLANAR MAPS
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A CHRONOLOGY OF PLANAR MAPS

1960 1978 1981 1995 2000

Random maps

Recursive approach (enumeration)

Matrix integrals (enumeration)

Bijections (enumeration)

• Recursive approach: Tutte, Brown, Bender, Canfield, Richmond,
Goulden, Jackson, Wormald, Walsh, Lehman, Gao, Wanless...

•Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg,
Kostov, Zinn-Justin, Boulatov, Kazakov, Mehta, Bouttier, Di Francesco,
Guitter, Eynard...

• Bijections: Cori & Vauquelin, Schaeffer, Bouttier, Di Francesco &
Guitter (BDG), Bernardi, Fusy, Poulalhon, Bousquet-Mélou, Chapuy...

• Geometric properties of random maps: Chassaing & Schaeffer,
BDG, Marckert & Mokkadem, Jean-François Le Gall, Miermont, Curien,
Albenque, Bettinelli, Ménard, Angel, Sheffield, Miller, Gwynne...
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MAPS EQUIPPED WITH AN ADDITIONAL STRUCTURE

• How many maps equipped with...
a spanning tree [Mullin 67, Bernardi]
a spanning forest? [Bouttier et al., Sportiello et al., Bousquet-Mélou
& Courtiel]
a self-avoiding walk? [Duplantier & Kostov; Gwynne & Miller]
a proper q-colouring? [Tutte 74-83, Bouttier et al.]
a bipolar orientation? [Kenyon, Miller, Sheffield, Wilson, Fusy,
Bousquet-Mélou...]

•What is the expected partition function of...
the Ising model? [Boulatov, Kazakov, Bousquet-Mélou, Schaeffer,
Chen, Turunen, Bouttier et al., Albenque, Ménard...]
the hard-particle model? [Bousquet-Mélou, Schaeffer, Jehanne,
Bouttier et al.]
the Potts model? [Eynard-Bonnet, Baxter, Bousquet-Mélou &
Bernardi, Guionnet et al., Borot et al., ...]
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EULERIAN ORIENTATIONS GENERATING FUNCTIONS

G(t) = 2Q(t, 0)

The 4-valent case: the ice model

Q(t, 1)

The 6-vertex model
Q(t, γ)

Non-alternating
(weight t)

Alternating
(weight tγ)

Each vertex has equally many incoming as outgoing edges.
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Part 1:
Counting Eulerian orientations
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EULERIAN ORIENTATIONS

Aim: Determine the number gn of (rooted planar) Eulerian
orientations with n edges

The generating function G(t) =
∞∑

t=1

gntn = t + 5t2 + . . .
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ENUMERATING EULERIAN ORIENTATIONS

Problem posed by Bonichon, Bousquet-Mélou, Dorbec and
Pennarun in 2016.
In 2017, E.P. and Guttmann:

Computed the number gn of Eulerian orientations for n < 100.
Predicted that

gn ∼ κg
(4π)n

n2(log n)2 .

This led us to conjecture the exact solution.
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PREVIEW: EXACT SOLUTION

Let R0(t) be the unique power series with constant term 0 satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R0(t)n+1.

The generating function G(t) =
∞∑

n=0

gntn of rooted planar Eulerian

orientations counted by edges is given by

G(t) =
1

4t2 (t − 2t2 − R0(t)).
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EULERIAN ORIENTATIONS OUTLINE

Bijections

Functional equations

Guess and check solution
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Step 1: Bijection to labelled maps
(EP and Guttmann, 2017)
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BIJECTION TO LABELLED MAPS
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LABELLED MAPS

Labelled maps are rooted planar maps with labelled vertices such that:

The root edge is labelled from 0 to 1.

Adjacent labels differ by 1.

By the bijection, G(t) counts labelled maps by edges.

1

2

1 3 2

1

1

0
1

−1

0

Eulerian orientations and the six-vertex model on planar maps Andrew Elvey Price



LABELLED QUADRANGULATIONS

By our bijection, Q(t, γ) counts labelled quadrangulations by faces
(t) and alternating faces (γ).

Non-alternating
(weight t)

Alternating
(weight tγ)

`+ 1 `

`+ 1`+ 2

` `+ 1

`+ 1 `
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LABELLED QUADRANGULATIONS

By our bijection, Q(t, γ) counts labelled quadrangulations by faces
(t) and alternating faces (γ).
Q(t, 0) counts labelled quadrangulations with no alternating faces.
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EULERIAN ORIENTATIONS

Step 2: Bijection between labelled
quadrangulations with no alternating faces

and labelled maps

(Miermont (2009)/Ambjørn and Budd (2013)).
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LABELLED QUADRANGULATIONS TO LABELLED MAPS

Highlight edges according to the rule. The red edges (sometimes)
form a labelled map. The bijection implies that Q(t, 0) = 2G(t).
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Exact solution using labelled
quadrangulations at γ = 0

(Bousquet-Mélou and E.P.)
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DECOMPOSITION OF LABELLED QUADRANGULATIONS
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EQUATIONS FOR PLANAR EULERIAN ORIENTATIONS

The series 2G(t) = Q(t, 0) is given by

Q(t, 0) = [y1]P(t, y)− 1,

where the series P(t, y), C(t, x, y) and D(t, x, y) are characterised by
the equations

P(t, 0) = 1

P(t, y) =
1
y
[x1]C(t, x, y),

D(t, x, y) =
1

1− C
(

t, 1
1−x , y

) ,
C(t, x, y) = xy[x≥0]

(
P(t, tx)D

(
t,

1
x
, y
))

,

We solve these using a guess and check method.
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SOLUTION FOR PLANAR EULERIAN ORIENTATIONS

Let R0(t) be the unique power series with constant term 0 satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R0(t)n+1.

Then the series P(t, y), C(t, x, y) and D(t, x, y) are given by:

tP(t, ty) =
∑
n≥0

n∑
j=0

1
n + 1

(
2n
n

)(
2n− j

n

)
yjRn+1

0 ,

C(t, x, ty) = 1−exp

−∑
n≥0

n∑
j=0

n∑
i=0

1
n + 1

(
2n− j

n

)(
2n− i

n

)
xi+1yj+1Rn+1

0

 ,

D(t, x, ty) = exp

∑
n≥0

n∑
j=0

∑
i≥0

1
n + 1

(
2n− j

n

)(
2n + i + 1

n

)
xiyj+1Rn+1

0

 .
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SOLUTION FOR PLANAR EULERIAN ORIENTATIONS

Let R0(t) be the unique power series with constant term 0 satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R0(t)n+1,

Then the generating function of rooted planar Eulerian orientations
counted by edges is

G(t) =
1
2

Q(t, 0) =
1

4t2 (t − 2t2 − R0(t)).

Asymptotically, the coefficients behave as

gn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/16 and µ = 4π.
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SOLUTION FOR QUARTIC EULERIAN ORIENTATIONS

Let R1(t) be the unique power series with constant term 0 satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R1(t)n+1,

Then the generating function of quartic rooted planar Eulerian
orientations counted by edges is

Q(t, 1) =
1

3t2 (t − 3t2 − R1(t)).

Asymptotically, the coefficients behave as

qn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/18 and µ = 4
√

3π.
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Part 2:
Solution for general γ

(Kostov/ E.P. and Zinn-Justin)

Non-alternating
(weight t)

Alternating
(weight tγ)

`+ 1 `

`+ 1`+ 2

`

`+ 1 `
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BACKGROUND (FROM PHYSICS)

Solved at criticality by Zinn-Justin in 2000.

Exactly solved by Kostov later in 2000 (to the satisfaction of
physicists).

Solution was not completely rigorous.

We corrected a mistake and simplified the form of the solutions.
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RECALL: SOLUTIONS AT γ = 0, 1

The generating function Q(t, 0) is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R0(t)n+1,

Q(t, 0) =
1

2t2 (t − 2t2 − R0(t)).

The generating function Q(t, 1) is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R1(t)n+1,

Q(t, 1) =
1

3t2 (t − 3t2 − R1(t)).
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PREVIEW: SOLUTION FOR Q(t, γ)

Define

ϑ(z, q) =
∞∑

n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ

′′′(α, q)
ϑ′(α, q)2 +

ϑ′′(α, q)
ϑ′(α, q)

)
.

Define R(t, γ) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)
ϑ′(α, q)

+
ϑ′′′(0, q)
ϑ′(0, q)

)
.

Then
Q(t, γ) =

1
(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.
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OUTLINE FOR GENERAL γ

Bijection

Functional equations

Solution using analytic methods Solution using analytic methods
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FUNCTIONAL EQUATIONS FOR THE SIX VERTEX MODEL

Q(t, γ) is characterised by equations relating it to generating
functions W(x) ≡W(t, ω, x) and H(x, y) ≡ H(t, ω, x, y).

Q(t, ω2 + ω−2) = H(t, ω, 0, 0) ≡ H(0, 0)

W(x) = x2tW(x)2 + ωxtH(0, x) + ω−1xtH(x, 0) + 1

H(x, y) = W(x)W(y) +
ω

y
(H(x, y)− H(x, 0)) +

ω−1

x
(H(x, y)− H(0, y)) .
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SOLVING FOR C(t, ω)

Think of W(x) and H(x, y) as analytic functions then consider

U(x) =
x(ω2 + 1)

1 + ix(ω2 + 1)
W
(

ω + ω−1

1 + ix(ω2 + 1)

)
+

x(ω−2 + 1)
1− ix(ω−2 + 1)

W
(

ω + ω−1

1− ix(ω−2 + 1)

)
+

ix2

t(ω2 − ω−2)
− x

t(ω + ω−1)2

U(x) is analytic except on two cuts iω[x1, x2] and −iω−1[x1, x2]

U(x) satisfies

U(iω(x± i0)) = U(−iω−1(x∓ i0)).

These + initial conditions characterise U(x).
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SOLUTION FOR U(x)

Define

ϑ(z, q) =
∞∑

n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8

and let ω = ie−iα. Then U(x) is determined by

U
(

x0
ϑ(z + α, q)
ϑ(z, q)

)
= A + B℘(z),

where ℘(z) is the Weierstrass function and x0, A, B and q are explicit
“constants” (they depend on t and α but not z).
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SOLUTION FOR Q(t, γ)

Define

ϑ(z, q) =
∞∑

n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ

′′′(α, q)
ϑ′(α, q)2 +

ϑ′′(α, q)
ϑ′(α, q)

)
.

Define R(t, γ) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)
ϑ′(α, q)

+
ϑ′′′(0, q)
ϑ′(0, q)

)
.

Then
Q(t, γ) =

1
(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.

Eulerian orientations and the six-vertex model on planar maps Andrew Elvey Price



Part 3:
Comparison between solutions
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COMPARISON BETWEEN SOLUTIONS

We now have a general expression for Q(t, γ) and a simpler
expression at γ = 0, 1.
Question: Are these actually the same expression?
Answer: Yes.
Ideas of proof (for γ = 0):

We just need to prove that

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R(t, 0)n+1 = R(t, 0)2F1

(
1
2
,

1
2
; 2
∣∣∣∣ 16R(t, 0)

)
.

Our proof involves relations of Ramanujan between theta
functions and 2F1 and some “well known” theta function
identities.
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COMPARISON BETWEEN SOLUTIONS

Question: Which solution method is more
powerful??
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FURTHER QUESTIONS

Find bijective proofs of the formulas for Q(t, 0) and Q(t, 1).
These each count a class of labelled trees.

What do large random Eulerian orientations look like?

A random quadrangulation A random bipolar triangulation

Images from Jérémie Bettinelli’s home page
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Thank you!
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