Tropical ideals do not realise all Bergman fans

Jan Draisma Universität Bern and Eindhoven University of Technology

FPSAC, Ljubljana, Juli 2019

joint work with Felipe Rincón

Tropicalisation

Setting: *K* an infinite field and $v : K \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ a non-Archimedean valuation:

- $v^{-1}(\infty) = \{0\}$
- v(ab) = v(a) + v(b)
- $v(a + b) \geq \min\{v(a), v(b)\}$

 $\overline{\mathbb{R}}$ is a semifield with respect to $\oplus = \min$ and $\odot = +$

Tropicalising polynomials Trop: $K[x_1, ..., x_n] \rightarrow \overline{\mathbb{R}}[x_1, ..., x_n]$ $f = \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} c_{\alpha} x^{\alpha} \mapsto \bigoplus_{\alpha} v(c_{\alpha}) \odot x^{\odot \alpha} = \operatorname{Trop}(f)$

Example: $K = \mathbb{Q}, v = 2$ -adic, $f = x^2 - 2 \rightsquigarrow$ Trop $(f) = (0 \odot x^{\odot 2}) \oplus 1 : x \mapsto \min\{2x, 1\}$

Tropical hypersurface $h \in \overline{\mathbb{R}}[x_1, \dots, x_n]$ $\rightsquigarrow V_{\mathbb{R}}(h) := \{p \in \mathbb{R}^n \mid \text{the min in } h(p) \text{ is attained} \ge \text{twice} \}$ **Tropicalising an ideal** $I \subseteq K[x_1, \dots, x_n] \rightsquigarrow \text{Trop}(I) := \{\text{Trop}(f) \mid f \in I\} \subseteq \overline{\mathbb{R}}[x_1, \dots, x_n]$

[Bieri-Groves, Einsiedler-Kapranov-Lind, Speyer-Sturmfels, Payne, D, ...]

Tropicalising a variety, fundamental theorem K algebraically closed, v nontrivial, $I \subseteq K[x_1, \ldots, x_n]$, then $V_{\mathbb{R}}(\operatorname{Trop}(I)) := \bigcap_{h \in \operatorname{Trop}(I)} V_{\mathbb{R}}(h) = \{v(x) \mid x \in V_{K^*}(I)\}.$

Structure theorem: If $V_{K^*}(I)$ is irreducible of dim d, then $V_{\mathbb{R}}(\text{Trop}(I))$ is the support of a finite, balanced, weighted polyhedral complex of dimension d.

Proposal to axiomatise the *algebra* side of tropical geometry.

Notation: $f \in K[x_1, ..., x_n]$ or $f \in \mathbb{R}[x_1, ..., x_n] \rightsquigarrow$ write $[f]_{x^{\alpha}}$ for the coefficient of x^{α} in f.

Observation: if $f, g \in I \subseteq K[x_1, ..., x_n]$ with $[f]_{x^{\alpha}} = [g]_{x^{\alpha}}$, then $h := f - g \in I$ has the following properties:

• $[h]_{x^{\alpha}} = 0$ and

• for all $\beta \neq \alpha$, $v([h]_{x^{\beta}}) \geq \min\{v([f]_{x^{\beta}}), v([g]_{x^{\beta}})\}$ with equality if the two valuations are different.

Definition: an \mathbb{R} -subsemimodule $J \subseteq \mathbb{R}[x_1, \ldots, x_n]$ is a tropical *ideal* if $x_i \odot J \subseteq J$ and for all $f, g \in J$ and x^{α} with $[f]_{x^{\alpha}} = [g]_{x^{\alpha}}$ there exists an $h \in J$ such that $[h]_{x^{\alpha}} = \infty$ and for $\beta \neq \alpha$: $[h]_{x^{\beta}} \geq \min\{[f]_{x^{\beta}}, [g]_{x^{\beta}}\}$ with equality if distinct.

Tropical ideals [Maclagan-Rincón]

Equivalently: $J_{\leq d} := \overline{\mathbb{R}}[x_1, \dots, x_n]_{\leq d}$ is a tropical linear space related to a valuated matroid [Dress-Wenzel], for each d; and $x_i \odot J_{\leq d} \subseteq J_{\leq d+1}$. Note that Trop(*I*) is a tropical ideal.

Key results

[Maclagan-Rincón]

• tropical ideals satisfy the ascending chain condition (but are not finitely generated) and

• a tropical ideal *J* defines a finite polyhedral complex $\bigcap_{h \in J} V_{\mathbb{R}}(h)$ equipped with weights, called its *tropical variety*.

Motivating question:

Which weighted polyhedral complexes arise in this manner?

It is not known if balancedness is necessary, nor do we have a notion of prime tropical ideal.

Main result

Theorem

[Draisma-Rincón]

The Bergman fan of $U_{2,3} \oplus V_8$, with weight 1 on the topdimensional fans, is *not* the tropical variety of any tropical ideal.

• U_{23} is the uniform matroid of rank 2 on 3 elements, with Bergman fan: $(\mathbb{R}_{\geq 0}e_1 \cup \mathbb{R}_{\geq 0}e_2 \cup \mathbb{R}_{\geq 0}e_3) + \mathbb{R}(1, 1, 1) \subseteq \mathbb{R}^3$.

• V_8 is the Vámos matroid of rank 4 on 8 elements, so its Bergman fan is a 4-dimensional fan in \mathbb{R}^8 .

The direct sum of these fans is a 6-dimensional fan in \mathbb{R}^{11} , and is not the tropical variety of any tropical ideal in 11 variables.

Tensor products of matroids? [Las Vergnas]

Given *K*-vector spaces *V*, *W* and nonzero vectors $v_1, \ldots, v_m \in V$ and $w_1, \ldots, w_n \in W$, get vectors $v_i \otimes w_j \in V \otimes W$ and three matroids: *M* on [m], *N* on [n] and *P* on $[m] \times [n]$.

P has the following properties:

- for each $i \in [m]$, $j \mapsto (i, j)$ is an iso from M to $P|_{\{i\} \times [n]}$;
- for each $j \in [n]$, $i \mapsto (i, j)$ is an iso from N to $P|_{[m] \times \{j\}}$; and
- $\operatorname{rk}(P) \ge \operatorname{rk}(M) \times \operatorname{rk}(N)$.

Question: for general matroids M and N on [m], [n], does a tensor product P with these properties exist?

Theorem

No, e.g., not for $M = U_{2,3}$ and $N = V_8$.

[Las Vergnas]

Theorem (D-Rincón)

The Bergman fan of $U_{2,3} \oplus V_8$, with weight 1 on the topdimensional fans, is *not* the tropical variety of any tropical ideal *J*.

- Call the first three variables x_1 , x_2 , x_3 and the last eight variables y_1 , ..., y_8 . Reduce to the case where J is homogeneous and saturated with respect to $\langle x_1, x_2, x_3, y_1, \dots, y_8 \rangle$.
- Show that $M(J_1)|_{\{x_1,x_2,x_3\}} = U_{2,3}$ and $M(J_1)|_{\{y_1,\dots,y_8\}} = V_8$.
- Show that $M(J_2)$, $M(J_2)|_{\{x_ix_j\}}$, $M(J_2)|_{\{y_iy_j\}}$ have ranks:

 $\begin{pmatrix} 2+4+1\\ 2 \end{pmatrix} = 21, \leq \begin{pmatrix} 2+1\\ 2 \end{pmatrix} = 3, \leq \begin{pmatrix} 4+1\\ 2 \end{pmatrix} = 10,$ so $M(J_2)|_{\{x_iy_j\}}$ has rank $\geq 21-13 = 8 = 2 \cdot 4$. Find: $M(J_2)_{\{x_iy_j\}}$ is a tensor product of $U_{2,3}$ and V_8 , a contradiction. \Box

- Not all tropical linear spaces are the tropical varieties of tropical ideals. (How about $Bergman(V_8)$?)
- Challenge: describe properties of varieties of tropical ideals, e.g. balancedness?
- Challenge: are there notions of prime tropical ideal, irreducible tropical variety, and tropical-algebraic matroids?

Thank you!