A NEW FORMULA FOR STANLEY'S CHROMATIC SYMMETRIC FUNCTION FOR UNIT INTERVAL GRAPHS AND e-POSITIVITY FOR TRIANGULAR LADDER GRAPHS

Samantha Dahlberg
Arizona State University

FPSAC July 2, 2019

Overview

- Chromatic symmetric functions.
- The $(3+1)$-free conjecture.
- Triangular ladders, $T L_{n}$.
- Chromatic symmetric functions in non-commuting variables.
- Deletion-contraction.
- Semi-symmetrized e-positivity.
- Signed formula for unit interval graphs.
- Sign-reversing involution for $T L_{n}$.
- Further work.

Graphs colorings

Given G with vertex set V a proper coloring κ of G is

$$
\kappa: V \rightarrow\{1,2,3, \ldots\}
$$

so if $u, v \in V$ are joined by an edge then

$$
\kappa(u) \neq \kappa(v)
$$

Chromatic symmetric function: Stanley 1995

Given a proper coloring κ of vertices v_{1}, \ldots, v_{N} we associate a monomial in commuting variables $x_{1}, x_{2}, x_{3}, \ldots$

$$
x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

The chromatic symmetric function is

$$
X_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

summed over all proper colorings κ.

$$
\begin{aligned}
X_{P_{3}}= & x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+\cdots \\
& +6 x_{1} x_{2} x_{3}+\cdots
\end{aligned}
$$

Symmetric functions

The algebra of symmetric functions, Λ, contains all formal power series f in commuting variables x_{1}, x_{2}, \ldots such that for all permutations π

$$
f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots\right)
$$

$$
f(x)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+\cdots
$$

Fact: Any basis of Λ is indexed by integer partitions.
An integer partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ of $n, \lambda \vdash n$, is a list of positive integers whose parts λ_{i} weakly decrease and sum to n.

$$
(3,1,1)=\left(3,1^{2}\right) \vdash 5
$$

Classic Bases: elementary

The i-th elementary symmetric function, e_{i}, is

$$
e_{i}=\sum_{j_{1}<j_{2}<\cdots<j_{i}} x_{j_{1}} \ldots x_{j_{i}}
$$

and

$$
e_{\lambda}=e_{\lambda_{1}} \ldots e_{\lambda_{\ell}} .
$$

$$
e_{(2,1)}=e_{2} e_{1}=\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\cdots\right)\left(x_{1}+x_{2}+x_{3}+\cdots\right)
$$

For the complete graph K_{n} on n vertices

$$
X_{K_{n}}=n!e_{n} .
$$

e-POSITIVITY

Call a graph G e-positive if X_{G} is a non-negative sum of elementary symmetric functions.

$$
\begin{aligned}
& G=0-0 \text { has } X_{G}=e_{(2,1)}+3 e_{(3)} \cdot \boldsymbol{V} \\
& K_{31}=\underbrace{0}_{0} \text { has } X_{K_{31}}=e_{(2,1,1)}-2 e_{(2,2)}+5 e_{(3,1)}+4 e_{(4)} \cdot \mathbf{x}
\end{aligned}
$$

The claw, K_{31}, is the smallest graph that is not e-positive.

$(3+1)$-FREE CONJECTURE

Conjecture (Stanley-Stembridge 1993)

If G is an indifference graph of a $(3+1)$-free poset then X_{G} is e-positive.

Hasse diagram
Indifference graph

Theorem (Guay-Paquet 2013)
It is sufficient to prove the Stanley-Stembridge conjecture for all $(2+2)$ and $(3+1)$-free posets.

Interval graphs

The indifference graphs for $(2+2)$ and $(3+1)$-free posets are unit interval graphs. Construct an unit interval graphs from a collection of integer intervals

$$
\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{l}, b_{l}\right]
$$

On each interval we place a complete graph.

The interval graph for the intervals $[1,5],[4,7]$ and $[7,8]$ is

Known e-positive unit interval graphs

- The paths $[1,2],[2,3], \ldots,[n-1, n]$ (Stanley 1995).
- Any list containing $[1, j]$ and $[j+1, n]$ (Stanley 1995).

- Any list containing [2, n-1] (Cho and Huh 2017).

- Any list $\left[1, j_{1}\right],\left[j_{1}, j_{2}\right], \ldots,\left[j_{k}, n\right]$ (Gebhard and Sagan 2001).

Triangular Ladders

The graph $P_{n, 2}$ comes from intervals $[1,3],[2,4], \ldots,[n-2, n]$, which we will call triangular ladders, $T L_{n}$.

The graph $T L_{8}$ comes from

$$
[1,3],[2,4],[3,5],[4,6],[5,7],[6,8] .
$$

In 1995 Stanley wrote
"It remains open whether $P_{d, 2}$ is e-positive."

Chromatic symmetric functions in
 NON-COMMUTING VARIABLES

A generalization by Gebhard and Sagan (2001).
Fix an ordering on the vertices vertices v_{1}, \ldots, v_{N}. The chromatic symmetric function in non-commuting variables is

$$
Y_{G}=\sum_{\kappa} x_{\kappa\left(v_{1}\right)} x_{\kappa\left(v_{2}\right)} \cdots x_{\kappa\left(v_{N}\right)}
$$

summed over all proper colorings κ.

$$
\begin{gathered}
G=\text { (1)-(2)-(3) } \\
Y_{G}= \\
x_{1} x_{2} x_{1}+x_{2} x_{1} x_{2}+x_{1} x_{3} x_{1}+x_{3} x_{1} x_{3}+\cdots \\
+x_{1} x_{2} x_{3}+x_{1} x_{3} x_{2}+x_{2} x_{1} x_{3}+x_{2} x_{3} x_{1}+\cdots
\end{gathered}
$$

Fact: The vertex labeling matters.

Symmetric functions in non-Commuting

VARIABLES

The algebra of symmetric functions in non-commuting variables, NCSym, contains all formal power series f in non-commuting variables x_{1}, x_{2}, \ldots such that for all permutations π

$$
f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots\right)
$$

$$
f(x)=x_{1} x_{1} x_{2}+x_{2} x_{2} x_{1}+x_{1} x_{1} x_{3}+x_{3} x_{3} x_{1}+x_{2} x_{2} x_{3}+x_{3} x_{3} x_{2}+\cdots
$$

Fact: Any basis of NCSym is indexed by set partitions.
An set partition $\pi=B_{1} / B_{2} / \cdots / B_{k}$ of $[n]=\{1,2, \ldots n\}, \pi \vdash[n]$ is a collection of nonempty disjoint subsets B_{i} called blocks that union to $[n]$.

$$
\{1,4\} /\{2,5\} /\{3\}=14 / 25 / 3 \vdash[5]
$$

Classic Bases: elementary

For $\pi \vdash[n]$ the elementary symmetric function in non-commuting variables, e_{π}, is

$$
e_{\pi}=\sum_{\left(i_{1}, i_{2}, \ldots, i_{n}\right)} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}
$$

where $i_{j} \neq i_{k}$ if j and k are in the same block of π.

$$
e_{12 / 3}=x_{1} x_{2} x_{2}+x_{1} x_{2} x_{1}+\cdots+x_{1} x_{2} x_{3}+\cdots
$$

For the complete graph K_{n} on n vertices

$$
Y_{K_{n}}=e_{12 \cdots n} .
$$

Deletion-contraction for Y_{G}

To delete an edge $\epsilon, G-\epsilon$, remove ϵ.

To contract an edge ϵ between u and $v, G / \epsilon$, merge u and v and any multiedges created.

DELETION-Contraction for Y_{G}

$$
\begin{gathered}
(1)-\text { (2) } \epsilon_{3}=\text { (1)-(2) (3) }- \text { (1)-(2) } \uparrow_{2} \\
Y_{P_{3}}=\left(x_{1} x_{2} x_{1}+x_{1} x_{2} x_{2}+x_{1} x_{2} x_{3}+\cdots\right)-\left(x_{1} x_{2} x_{2}+\cdots\right)
\end{gathered}
$$

Given a monomial of degree $n-1$ define the induced monomial for $j<n$ to be

$$
x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} \cdots x_{i_{n-1}} \uparrow_{j}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} \cdots x_{i_{n-1}} x_{i_{j}} .
$$

Theorem (Gebhard and Sagan 2001)

For G with vertices $V=[n]$ and an edge ϵ between vertices j and n we have

$$
Y_{G}=Y_{G-\epsilon}-Y_{G / \epsilon} \uparrow_{j} .
$$

Induction on monomials

Theorem (D 2018)

G is a unit interval graph with intervals $\left[a_{1}, 1\right],\left[a_{2}, 2\right], \ldots,\left[a_{n}, n\right]$ and G^{\prime} is G after removing vertex n. Then,

$$
Y_{G}=Y_{G^{\prime}} Y_{K_{1}}-\sum_{i=a_{n}}^{n-1} Y_{G^{\prime}} \uparrow_{i} .
$$

$$
={\underset{(1)}{3(2)}}_{(4)}^{(1)-(2) \uparrow_{2}}-{ }_{(1)-(2)}^{3} \uparrow_{3}^{3}
$$

SEmi-SYMMETRIZING

$$
e_{12} \uparrow_{1}=\frac{1}{2}\left(e_{12 / 3}+e_{1 / 23}-e_{13 / 2}-e_{123}\right) \equiv \frac{1}{2}\left(e_{12 / 3}-e_{123}\right)
$$

For $\pi \vdash[n]$ let $\lambda(\pi) \vdash n$ be formed by all the block sizes.

$$
\lambda(1 / 23)=\lambda(13 / 2)=(2,1) \quad \text { and } \quad 1 / 23 \sim 13 / 2
$$

Say two set partitions $\pi \vdash[n]$ and $\sigma \vdash[n]$ are related, $\pi \sim \sigma$, if
(1) $\lambda(\pi)=\lambda(\sigma)$ and
(2) the sizes of the blocks containing n are the same.

If $\pi \sim \sigma$ we say e_{π} and e_{σ} are equivalent,

$$
e_{\pi} \equiv e_{\sigma}
$$

Extend this definition linearly.

SEMI-SYMMETRIZING

For $\pi \vdash[n-1]$ define

$$
\pi \oplus_{j} n \vdash[n]
$$

to be the integer partition where we place n in the same block as j.

Theorem (Gebhard and Sagan 2001)

For $\pi \vdash[n-1], j<n$ and b the size of the block in π containing $n-1$ we have

$$
e_{\pi} \uparrow_{j} \equiv \frac{1}{b}\left(e_{\pi / n}-e_{\pi \oplus_{j} n}\right)
$$

Call G semi-symmetrized e-positive if $Y_{G} \equiv f$ for some $f \in$ NCSym that is a sum of nonnegative e_{π}.

Fact: If G is semi-symmetrized e-positive then G is e-positive.

New formula for unit interval graphs

Theorem (D 2018)

For a unit interval graph G on n vertices,

$$
Y_{G} \equiv \frac{1}{n!} \sum_{D \in \mathcal{A}_{L}^{\prime}(G)}(-1)^{t(D)} e_{\pi(D)} .
$$

Arc diagrams $D \in \mathcal{A}_{L}^{\prime}(G)$ are defined by:

- all vertices have at most one left arc,
- each arc possibly has a tic mark,
- a permutation labeling increasing on all pieces and
- one vertex in each right-most piece is marked with a star.
$D \in \mathcal{A}_{L}^{\prime}\left(T L_{9}\right)$ with $t(D)=3$ and $\pi(D)=13 / 2 / 4 / 57 / 6 / 89$.

The sign-REVERSING INVOLUTION FOR $T L_{n}$

The general inductive idea:

The sign-reversing involution:

- changes $t(D)$ by one and
- has $\pi(D) \sim \pi(\varphi(D))$.
- There are 18 cases where D is a fixed point.

The sign-REVERSING INVOLUTION

$D \in \mathcal{A}_{L}\left(T L_{9}\right)$ with $\pi(D)=12346 / 579 / 8$ is a fixed point.

Fixed points:

- have no tic marks,
- have a star on each connected component and
- satisfy 5 other more detailed conditions.

New family of e-positive graphs

Theorem (D 2018)

The triangular ladder $T L_{n}, n \geq 1$, is semi-symmetrized e-positive and so e-positive.

Given a graph G on $[n]$ and H on $[m]$ their concatenation is the graph $G \cdot H$ on $[n+m-1]$ where G is on the first n vertices and H is on the last m.

$$
K_{4} \cdot T L_{4}=\underbrace{3}_{2} \underbrace{6}_{5}
$$

Theorem (Gebhard and Sagan 2001)

If a graph G is semi-symmetrized e-positive then so is the concatenation $G \cdot K_{m}$ and $G \cdot T L_{4}$.

New family of e-positive graphs

Proposition (D 2018)

Any graph G such that

$$
G=G_{1} \cdot G_{2} \cdots G_{l}
$$

where $G_{i}=T L_{n_{i}}$ or $G_{i}=K_{n_{i}}$, is a semi-symmetrized e-positive graph, so also e-positive.

Further work:

- Investigate the relationship between the positive terms of $T L_{n}$ and acyclic orientations.
- By computer calculation all unit interval graphs up to $n=7$ vertices are semi-symmetrized e-positive. Investigate if this is true for all unit interval graphs.

Thank you very much!

