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Intro: counting factorizations in the symmetric group

Question

How many ways are there to write the n-cycle¢ = (1---n) in S, as a
product

of permutations w1, ..., w7’

Answer:
|6n|k_1 = (”!)k_l

(any group, nothing special about permutations)



Intro: counting factorizations in the symmetric group

Question

How many ways are there to write the n-cycle¢ = (1---n) in S, as a
product
C =y Tk

of permutations my, ..., T, so that 7; has exactly r; cycles?

Since # cycles is conjugacy invariant, the following general tool works:

Lemma (Frobenius, 1898)

Let G be a finite group, g € G, and A1, ..., Ay subsets of G that are
closed under conjugacy by G. Then the number of factorizations of g as a
product g = t1 - - - t) such that t; € A; for each i is

1 Loneir(e) Aim) (g xalz) - xa(&),
where Irr(G) is the set of irreducible representations of G, dim(\) is the
dimension of the representation \, X is the character associated to \, and
z; is the formal sum in the group algebra of elements in A;.

v




Jackson's theorem

Theorem (Jackson (1988) as formulated by Schaeffer—Vassilieva (2008))

Let ¢ be a fixed n-cycle in &, and let a,, .., be the number of tuples
(m1,...,mk) of elements in &, such that 7; has r; cycles for all i and
m Tk =¢. Then

X1 Xk
Z arl,-‘.,rkx{1 o 'XI:k Z Mp1 1,..,px— 1( )|p1 e ( )Pk

|
Mk 21 P1s-sPk>1 P P

where (x), denotes the falling factorial (x)p == x(x —1)---(x —p+1) and

n
My pi = XX ((1+X1)"'(1+Xk)_Xl"‘Xk> )

Observation: (2)',9 = ( ). Interpretation: (n!)%~ 1/\/II’;1 . pe—1 counts
cycle-colored factor/zat/ons

Recent combinatorial proof: Bernardi-Morales (2016), via maps on
surfaces & sign-reversing involutions




N
What is this talk about?

@ Often, interesting questions about &, have nice generalizations or
analogues in other contexts

E.g.: Jackson (1988) also enumerated factorizations of an n-cycle as
a product of transpositions

This was extended to well generated complex reflection groups by
Chapuy-Stump (2014)

@ I'm going to describe some initial attempts to do the same thing for
the more general result

First step: translate &,
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S, is a reflection group
@ V a C-vector space; a transformation T : V — V is a reflection if it
fixes a hyperplane pointwise

@ a complex reflection group is a finite subgroup of GL(V) that is
generated by its subset of reflections

o Eg.: G,isa CRG

e &,: n X n permutation matrices, act on C”

0 0 0 1 w z
. ) 0 1 0 O .
e Transpositions are the ref'ns: X = || fixes w =z
0 0 1 O y y
1 0 0 O z w

o G, generated by transpositions
o In general, # cycles = dimension of fixed space:

(153)(26)(4) =

[eNeoNeN Ho Nl
HOOOOO
O OOOO
OO =OOOo
[eNeNeNeNeN )
el eNe e

fixes vectors like (a, b, a, c, a, b)



S, is a reflection group

@ V a C-vector space; a transformation T : V — V is a reflection if it
fixes a hyperplane pointwise

a complex reflection group is a finite subgroup of GL(V) that is
generated by its subset of reflections

E.g.: G,is a CRG

E.g.. group of n x n signed permutation matrices is a CRG

E.g.. every finite Coxeter group is a CRG

E.g.: wreath product (Z/mZ) 1S, is a CRG (definition on next slide!)



Generalized permutations

Think of Z/mZ as m-th complex roots of unity; wreath product is
(Z)mZ)1 &, = {n X n monomial matrices

whose nonzero entries are m-th roots of 1}

e m=1. &,, Coxeter type A,_1
@ m = 2: signed permutations, Coxeter type B,
0 1 0

@ m > 3: things like | =1 0 0 , not Coxeter groups
0 0 exp(4ri/5)

The weight of an element is the Z/mZ value corresponding to the
product of the nonzero entries: matrix above is m = 10, weight =9
because —1 -1 - exp(4mi/5) = exp(27i - %).

Another example: the subgroup G(m, m, n) of (Z/mZ) &, consisting of
elements of weight 0 (when m = 2, Coxeter type D,)



n-cycles are Coxeter elements

e In &, we factor n-cycle
@ Analogue in a well generated CRG is a Coxeter element
e In (Z/mZ)1&,, with w = exp(27i/m), these are things like

w

1

e In G(m, m, n), things like

1




|
Our question

Jackson counted factorizations of the n-cycle in the symmetric group &,
as an arbitrary product, keeping track of the number of cycles of each
factor, using a change of basis to binomial coefficients.

We count factorizations of a Coxeter element in (Z/mZ) 1 &, (or other
CRG) as an arbitrary product, keeping track of the fixed space dimension
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Reminder for comparison: Jackson

Theorem (Jackson (1988))

Let ¢ be a fixed n-cycle in G, and let a,, .., be the number of tuples
(m1,...,7k) of elements in S, such that w; has r; cycles for all i and
T T =¢. Then

(x1) (x«)
Z ‘9r1,-..,r;<X1r1 o 'X/:k Z MP1 1, pe—1 PLL Pk

| |
ek >1 P1y--sPk>1 P Pk

where (x), denotes the falling factorial (x)p := x(x —1)---(x — p+1) and

n
Mps....o = [Xfl"'X/fk]<(1+xl)"‘(1+Xk)—X1'”Xk) :
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Our answer (wreath product)

Theorem (L—Morales (2019))

For m > 1, let ¢ be a fixed Coxeter element in G = (Z/mZ)1 S, and let
ar,...r, be the number of factorizations of ¢ as a product of k elements of

G with fixed space dimensions ry, ..., ry, respectively. Then
(m) (m)
. TG D YA ot S . ).
Ar,..n X1 Xk = PLesPk mprp, | mPx p!
iy lk P1,-++,Pk ’ k:
ri>0 pi=0

(x -1 = (x = 1)(x —m—1)---(x —m(p — 1) — 1) and ML, _, is
exactly the same coefficient as before.

Observation: [(Z/mZ)1 &p| = mPp!
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Proof idea

@ Proof with character theory is technical, straightforward, not
illuminating

@ We think it is more interesting to give a combinatorial proof

o Fixed space dimension counts cycles of weight 0

@ Rewrite the desired result as

X X
5 ann(ma2) et 1) = (6P 5D g, () ()

= Th0"

Interpret left side as an elaborate cycle-coloring scheme

Colored factorizations in (Z/mZ) &, project to colored factorizations
of an n-cycle in &,

Carefully count pre-images to get result

Recover Chapuy—-Stump result (reflection factorizations) for this
group as corollary
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N
What about other CRGs?

G(m,m,n) = {n X n monomial matrices whose nonzero

entries are m-th roots of 1 and have product 1}

Coxeter elements look like

w

-1

Under projection, gives an (n — 1)-cycle in &,.
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Aside: factoring an (n — 1)-cycle
Two very different ways to factor an (n — 1)-cycle:
(13)(24)(5)-(1432)(5) = (1234)(5) vs. (15)(24)(3)-(152)(34) = (1234)(5)

e Say (r1,...,7k) is a transitive factorization of its product if group
(m1,...,mk) acts transitively on {1,...,n}

@ Every factorization of an n-cycle in &, is transitive

e A factorization of an (n — 1)-cycle in &, is nontransitive if and only if
all factors share a fixed point.



Aside: factoring an (n — 1)-cycle
Two very different ways to factor an (n — 1)-cycle:
(13)(24)(5)-(1432)(5) = (1234)(5) vs. (15)(24)(3)-(152)(34) = (1234)(5)

Theorem (L—Morales (2019) (?7!1177))

Let ¢,—1 be a fixed (n — 1)-cycle in &,. For integers ri,. .., r let by, .,
be the number of k-tuples (m1,...,7x) of elements in &, such that ; has

ri cycles fori=1,...,k, m1 - Tk = sp—1, and these tuples are a transitive
factorization. Then

|
b Xrl---xrk—n'
My k™1 k — nk

Moy >1 P1se-sPk>1

n (x1)p (%K) i
2 Mooy~ e DY

where M, . still the same as ever.

Proof. Character theory. (Is there a combinatorial proof?) O




Main theorem in G(m, m, n)
e Say (ui,...,ux) € G(m, m,n)¥ is transitive if (v, ..., uy) acts
transitively on {w;,e;j}.
o (In wreath product, every factorization of Coxeter element is
transitive.)

@ In G(m, m, n), a factorization of a Coxeter element is transitive if and
only if the projection into &, is transitive.



Main theorem in G(m, m, n)
e Say (ui,...,ux) € G(m, m,n)¥ is transitive if (v, ..., uy) acts
transitively on {w/ e;}.
Theorem (L—Morales (2019))

Let by,,..r be the number of transitive factorizations of a Coxeter element
in G = G(m, m,n) as a product of k elements of G with fixed space

dimensions ri, ..., ry, respectively. Then
D bt =
r1,...,rk20
P P
]G|k_1/nk- Z Mgl b _1p1(X1) _fk(xk) ’
oPkmpi=l(pp — 1)1 mP—Y(pg — 1)}

P1se-sPk>1

where Po(x) =1, Pi(x) = x, and for i > 1,
P(x)=(x—-(—-1)(m-=1))-(x—1)(x—m=1)---(x = (i —2)m —1),

n . . .
and My, ., is once again the same thing.

Proof idea: same projection.




Exceptional CRGs

There are 26 other irreducible complex reflection groups for which
this question makes sense (“well generated”): 13 of rank 2, five of
rank 3, ..., one of rank 8

Ask same question, but what basis to use?

For (Z/mZ) 1 &, roots of (x — 1),(.m) arel,m+1,...,(n—1)m+1
For G(m, m, n), roots of Pi(x) are 1,....m(i —2)+1;(i—1)(m—1)
Both cases: these are the coexponents of the group



Exceptional CRGs

@ There are 26 other irreducible complex reflection groups for which
this question makes sense (“well generated”): 13 of rank 2, five of
rank 3, ..., one of rank 8

Theorem (L—Morales (2019))

For any well generated CRG G of rank n =2 or 3 with one exception
(Gas), let ¢ be a fixed Coxeter element in G, and let a,,, . . be the
number of factorizations of ¢ as a product of k elements of G with fixed

space dimensions ry, ..., ry, respectively. Then
r rk o k—1
E : a,,nX1 = |G| § Mpl, Pk Pp,(x1) - - - Pp, (xk),
e lk P15---5Pk
>0 pi=0

where the P;(x) is a polynomial defined in terms of the coexponents and
degrees of the group.

Choice of basis unambiguous for Gys, Gsp, but coefficients are different;
for other cases, choice of basis is not clear



N
Thanks!

Thanks for listening!

cycles weight 0

cycles nonzero weight
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Speculative: encode this as maps?

@ Genus-0 factorizations of n-cycle in &, +— noncrossing partitions,
Catalan numbers

@ Genus-0 factorizations of Coxeter element in G(d,1,n) «—
symmetric noncrossing partitions, type B Catalan = (2n")

d=2

(a) (b)
QD @ 0O QO @O QO @

(c) d=3
() ) © ©, ) ©,
©) D) ©) € (D ©) () SN0 € @ )
@ 62 € ¢ @ ¢ '@ ) @ ¢ & )
©) @) ©) © @) @)



Speculative: encode this as maps?

@ Genus-0 factorizations of n-cycle in &, «— noncrossing partitions,
Catalan numbers

@ Genus-0 factorizations of Coxeter element in G(d,1,n) «—
symmetric noncrossing partitions, type B Catalan = (2n")

@ It is easy to attach weighted maps or maps with symmetry:

but genus is not “right”. Other ideas?



Refining by cycle type
o For &, cycle type = orbit of fixed space
Theorem (Bernardi-Morales (2013))

ay@) _ \ counts factorizations with given cycle types of factors. One has

-----

ST A awpo (x1) Py (xk) =

A AR

1)
()<t ¥ (_“1“ AT (1) m o (%)
p@ ( (M) 1) (é(,u(k) 1)

e For (Z/mZ) 1 &,, orbit of fixed space = cycle type of weight 0



Refining by cycle type

o For &, cycle type = orbit of fixed space

e For (Z/mZ)1 &, orbit of fixed space = cycle type of weight 0
Theorem (L—Morales 2019)

ag\'gg \(k) counts factorizations with given weight-0 cycle type. One has

Z )\(1 HPA 1X1 - Xl(),Xz(),...,Xél),...):

A AR ‘n’, m
k—1 Mq1 1.,qk=1
|G| Z — o mum (xa) - mye (X)),
p(k) HI 1 (q,—l)

where the sum on the RHS is over partitions ") of size at most n, not all
() if [uU)| =

of size n, and qj = (,u) i lu ’ "
pY))+1  otherwise




Refining by weight

Theorem (L—Morales (2019))

Form>1, let G = G(m,1,n) and let c be the Coxeter element in G. For
i=1,...,k letvi={(rip,...,rim—1) be a tuple of nonnegative integers,
and let aslnl)_,,rk be the number of factorizations ¢ = uy---ux of c as a
product of k factors such that u;j has exactly r; ; cycles of weight j for each

Jj=0,...,m—1. Let x; denote the variable set {xj0,...,Xim-1}. Then
k—1 -1
Do Al =6t Y et
Y150k t: tm=1

i : e m—1,.
>ooome 11 <(x,,o + X+ + ™1 1) /m)'

P1,-pk>1 i Pi
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