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Abstract. We show that, up to multiplication by a factor 1
(cq;q)∞

, the weighted words
version of Capparelli’s identity is a particular case of the weighted words version of
Primc’s identity. We prove this first using recurrences, and then bijectively. We also
give finite versions of both identities.

Résumé. Nous prouvons que, à multiplication par un facteur 1
(cq;q)∞

près, la version
mots pondérés de l’identité de Capparelli est un cas particulier de la version mots
pondérés de l’identité de Primc. Nous prouvons cela d’abord en utilisant des récur-
rences, puis bijectivement. Nous donnons aussi des versions finies des deux identités.
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1 Introduction and statement of results

1.1 Historical background

A partition λ of a positive integer n is a non-increasing sequence of natural numbers
whose sum is n, the partitions of 4 being 4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1. The
number n is called the weight of λ. Let us recall, for n ∈ N ∪ {∞}, the classical q-series
notation

(a; q)n :=
n−1

∏
k=0

(1− aqk).

Connections between partition identities and representation theory have been a major
subject of interest over the last few decades, beginning with Lepowsky and Wilson’s
representation theoretic proof of the famous Rogers-Ramanujan identities [12, 13].

Theorem 1 (The Rogers-Ramanujan identities). Let i = 0 or 1. Then

∑
n≥0

qn2+(1−i)n

(q; q)n
=

1
(q2−i; q5)∞(q3+i; q5)∞

. (1.1)
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Lepowsky and Wilson showed that, after multiplying both sides of (1.1) by (−q; q)∞,
the right-hand side is the principally specialised Weyl-Kac character formula for level 3
standard modules of A(1)

1 [11], and the left-hand side corresponds to bases constructed
from vertex operators.

The Rogers-Ramanujan identities can also be seen as combinatorial identities on par-
titions.

Theorem 2 (Rogers-Ramanujan, combinatorial version). Let i = 0 or 1. For all non-negative
integers n, the number of partitions of n into parts differing by at least 2 and having at most i
ones is equal to the number of partitions of n into parts congruent to ±(2− i) modulo 5.

The approach of Lepowsky and Wilson was then extended and modified by several
authors to treat other levels and other Lie algebras, leading to many interesting new
Rogers-Ramanujan type identities which were previously unknown to combinatorialists.
For some examples, see [5, 14, 16, 18] and the references therein. On the other hand,
combinatorialists have been working on combinatorial proofs and refinements of these
new identities, see for example [2, 6, 8].

The purpose of this paper is to establish a connection between two seemingly unre-
lated partition identities from representation theory: Capparelli’s identity and Primc’s
identity. Let us now present these two theorems in detail.

1.2 Capparelli’s identity

A good example of the interplay between combinatorics and representation theory is
Capparelli’s identity, which was conjectured by Capparelli in [4] by studying the Lie
algebra A(2)

2 at level 3.

Theorem 3 (Capparelli). Let C(n) denote the number of partitions λ1 + · · · + λs of n such
that λs > 1 and for all i,

λi − λi+1 ≥
{

2 if λi + λi+1 ≡ 0 mod 3,
4 otherwise.

Let D(n) denote the number of partitions of n into distinct parts not congruent to ±1 (mod 6).
Then for every positive integer n, C(n) = D(n).

The first proof was given by Andrews in [2] and used q-trinomial coefficients and
recurrences. The identity was then proved bijectively, refined and generalized by Alladi,
Andrews and Gordon [1] using the method of weighted words. Soon after, it was re-
proved via representation theoretic techniques by Capparelli [5] and by Tamba-Xie [19].
In [15], Meurman and Primc later showed that Capparelli’s identity can be recovered by
studying the (1, 2)-specialisation of the character formula of the level 1 modules in A(1)

1 .
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The principle of the weighted words approach of Alladi, Andrews and Gordon in [1]
is to prove a “non-dilated” version of Capparelli’s identity on coloured partitions, which
recovers the original identity under certain transformations called dilations. In addition
to providing a refinement of Capparelli’s identity, the advantage of this method is that
one can perform other dilations and obtain infinitely many new combinatorial identities.

Instead of explaining their original result, we present a new equivalent formulation
which will make the connection with Primc’s identity clearer.

Let us consider partitions into natural numbers in three colours, a, c, and d, with the
ordering

1a < 1c < 1d < 2a < 2c < 2d < · · · , (1.2)

satisfying the difference conditions in the matrix

C =


a c d

a 2 2 2
c 1 1 2
d 0 1 2

. (1.3)

Here the entry (x, y) in the matrix C gives the minimal difference between successive part
of colour x and y (recall that in a partition, parts are always in non-increasing order).

The weighted words version of Capparelli’s identity can be stated as follows.

Theorem 4 (Capparelli’s identity, weighted words version). Let C(n; i, j) denote the number
of partitions of n into coloured integers satisfying the difference conditions in matrix C, having i
parts coloured a and j parts coloured d. We have

∑
n,i,j≥0

C(n; i, j)aidjqn = (−q; q)∞(−aq; q2)∞(−dq; q2)∞. (1.4)

Note that to obtain an infinite product, one cannot keep track of the number of parts
coloured c.

Under the dilations
q→ q3, a→ aq−1, d→ dq,

which correspond to the following transformations of the coloured integers

ka → (3k− 1)a, kc → (3k)c, kd → (3k + 1)d,

the order (1.2) becomes the natural ordering

2a < 3c < 4d < 5a < 6c < 7d < · · · ,

and the difference conditions in the matrix C of (1.3) become the difference conditions
defining the partitions counted by C(n) in Theorem 3. Under the same dilations, the
infinite product in (1.4) becomes the generating function for the partitions counted by
D(n). With the two extra parameters a and b, this gives the following refinement of
Capparelli’s identity.
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Corollary 5 (Alladi-Andrews-Gordon). Let C(n; i, j) and D(n; i, j) denote the number of par-
titions counted by C(n) and D(n), respectively, in Theorem 3, having i parts congruent to 1
modulo 3 and j parts congruent to 2 modulo 3. Then for all n, i, j ∈N, C(n; i, j) = D(n; i, j).

1.3 Primc’s identity

We now describe Primc’s identity and its weighted word version.
In [17], Primc established a connection between the difference conditions in certain

vertex operator constructions and energy functions of certain perfect crystals. He fur-
ther developed his ideas in [16] to prove new partition identities arising from crystal
base theory. His approach relies not only on the Weyl-Kac character formula as was
done by Lepowsky and Wilson, but also on the crystal base character formula of Kang,
Kashiwara, Misra, Miwa, Nakashima and Nakayashiki [10].

Here, we focus on one of the identities of [16]. Consider partitions into natural
numbers in four colours a, b, c, d, with the ordering

1a < 1b < 1c < 1d < 2a < 2b < 2c < 2d < · · · , (1.5)

satisfying the difference conditions in the matrix

P =


a b c d

a 2 1 2 2
b 1 0 1 1
c 0 1 0 2
d 0 1 0 2

. (1.6)

Primc conjectured that after the transformations

ka → (2k− 1)a, kb → (2k)b, kc → (2k)c, kd → (2k + 1)d, (1.7)

corresponding to the dilations

q→ q2, a→ q−1, c→ 1, d→ q, (1.8)

the generating function for these partitions is equal to 1
(q;q)∞

.

In [8], Lovejoy and the author proved the following weighted words version of
Primc’s theorem.

Theorem 6 (Dousse-Lovejoy, weighted words version of Primc’s identity).
Let P(n; k, `, m) denote the number of four-coloured partitions of n with the ordering (1.5) and
matrix of difference conditions (1.6), having k parts coloured a, ` parts coloured c, and m parts
coloured d. Then

∑
n,k,`,m≥0

P(n; k, `, m)qnakc`dm =
(−aq; q2)∞(−dq; q2)∞

(q; q)∞(cq; q2)∞
.

After performing the dilations (1.8), the infinite product above indeed becomes 1
(q;q)∞

.
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1.4 Statement of results

The goal of this paper is to establish a connection between Capparelli’s and Primc’s
identities. To do so, we consider only their weighted words versions (Theorems 4 and 6).
Indeed, we have just seen that this is more general and that the original theorems can be
recovered under particular dilations.

From a representation theoretic point of view, the two identities do not seem to be
related a priori: Primc’s identity comes from the study of crystal bases of A(1)

1 , while
Capparelli’s identity does not seem related to crystal bases and originated from a vertex
operator construction on the level 3 modules of A(2)

2 . The matrix C from Theorem 4 also
appeared in Primc’s paper [16] as the energy matrix of an “almost perfect” sl(2, C)∼–
crystal, together with identities for the particular dilations q → q2, a → q−1, d → q and
q → q3, a → q−2, d → q2. However, Primc said that these identities are ‘not related to
the crystal base theory, at least not in any obvious way.’ Indeed, they were proved by him
and Meurman in [15] by using the vertex operator algebra construction for the basic
sl(2, C)∼-module.

Combinatorially, the difference conditions of Capparelli’s and Primc’s identity do not
seem to be related either, and don’t even involve the same number of colours.

However we show that, up to a 1
(cq;q)∞

factor, Capparelli’s identity is actually the par-
ticular case b = c of Primc’s identity. Therefore Theorem 4 (and thus also the identities
mentioned by Primc) is actually connected to the crystal base theory, as a particular case
of Theorem 6.

Let us state our main theorem. Define GC
k (q; a, c, d) to be the generating function for

partitions into coloured integers (1.2) satisfying the difference conditions from Cappar-
elli’s identity (1.3), with the added condition that the largest part is at most k. In the same
way, define GP

k (q; a, b, c, d) to be the generating function for partitions into coloured inte-
gers (1.5) satisfying the difference conditions from Primc’s identity (1.6), with the added
condition that the largest part is at most k. In these generating functions, the power of a
(resp. b, c, d) counts the number of parts coloured a (resp. b, c, d) in the partition.

Theorem 7. For all positive integers k, we have

GC
k (q; a, c, d)
(cq; q)k

= GP
k (q; a, c, c, d).

Remark. In Theorem 4, one needs to set the variable c to be equal to 1 (i.e. not keep track
of the number of parts coloured c) to obtain an infinite product generating function.
Similarly, in Theorem 6, one needs to set the variable b to be equal to 1 (i.e. not keep
track of the number of parts coloured b). However we see here that the generating
functions GC

k (q; a, c, d) and GP
k (q; a, c, c, d) are equal even when keeping track of all the

colour variables a, c, d from Capparelli’s identity.
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In terms of partitions, Theorem 7 can be expressed in the following way. Let us define
C (resp. P) to be the set of coloured partitions satisfying the order (1.2) (resp. (1.5)) and
difference conditions (1.3) (resp. (1.6)).

Theorem 8 (Combinatorial version). Let C(n; k; i, j, `) denote the number of partition pairs
(λ, µ) of total weight n, where λ ∈ C and µ is an unrestricted partition coloured c, having in
total i parts coloured a, j parts coloured c, ` parts coloured d, and largest part at most k. Let
P(n; k; i, j, `) denote the number of partitions λ ∈ P of weight n, having i parts coloured a, j
parts coloured b or c, ` parts coloured d, and largest part at most k. Then for all positive integers
n and k and all non-negative integers i, j, `,

C(n; k; i, j, `) = P(n; k; i, j, `).

Thanks to Theorem 7, Capparelli’s identity is now a corollary of Primc’s identity.
Indeed

∑
n,i,j≥0

C(n; i, j)aidjqn = lim
k→∞

GC
k (q; a, 1, d)

= lim
k→∞

(q; q)kGP
k (q; a, 1, 1, d)

= (q; q)∞ ∑
n,i,j,`≥0

P(n; i, `, j)qnaidj

=
(−aq; q2)∞(−dq; q2)∞

(q; q2)∞
.

By Euler’s identity 1
(q;q2)∞

= (−q; q)∞, this is the same as (1.4).
Even though the variable c (resp. b) needs to be set equal to 1 in Capparelli’s (resp.

Primc’s) identity to obtain an infinite product, Theorem 7 highlights the importance of
these variables. Therefore it is interesting to find a formula for the generating functions
of Capparelli’s and Primc’s identities with all colour variables. Moreover, finding finite
versions of partition identities has been a subject of interest in the recent years (see, e.g.,
[3] and [9]). We now present a finite version of both theorems with all colour variables.

Theorem 9 (Finite version of Primc’s identity). We have, for every positive integer k,

GP
k (q; a, b, c, d) =

(
1− bqk+1

) k+1

∑
j=0

uj(a, b, c, d)q(
k+1−j

2 )

(q; q)k+1−j
,

where for all n ≥ 0,

u2n(a, b, c, d) = (1− b)
n

∑
`=0

(−aq2`+1; q2)n−`(−dq2`+1; q2)n−`
(bq2`; q2)n−`+1(cq2`+1; q2)n−`

q2`

(q; q)2`
,
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and

u2n+1(a, b, c, d) = (b− 1)
n

∑
`=0

(−aq2`+2; q2)n−`(−dq2`+2; q2)n−`
(bq2`+1; q2)n−`+1(cq2`+2; q2)n−`

q2`+1

(q; q)2`+1
.

Theorem 10 (Finite version of Capparelli’s identity). We have, for every positive integer k,

GC
k (q; a, c, d) = (cq; q)k+1

k+1

∑
j=0

uj(a, c, c, d)q(
k+1−j

2 )

(q; q)k+1−j
,

where the sequence (un(a, b, c, d))n∈N is defined as in Theorem 9.

Therefore, when b = 1, Theorem 9 becomes

Corollary 11. We have, for every positive integer k,

GP
k (q; a, 1, c, d) =

(
1− qk+1

) b k
2 c

∑
j=0

(−aq; q2)j(−dq; q2)j

(q2; q2)j(cq; q2)j

q(
k+1−j

2 )

(q; q)k+1−j
,

and Theorem 10 becomes

Corollary 12. We have, for every positive integer k,

GC
k (q; a, 1, d) = (q; q)k+1

b k
2 c

∑
j=0

(−aq; q2)j(−dq; q2)j

(q2; q2)j(cq; q2)j

q(
k+1−j

2 )

(q; q)k+1−j
.

It is then easy to recover the infinite product form by performing the change of
variable j = b k

2c − j, letting k tend to infinity, and using the fact that

lim
k→∞

b k
2 c

∑
j=0

q(
2j
2 )

(q; q)2j
= lim

k→∞

b k
2 c

∑
j=0

q(
2j+1

2 )

(q; q)2j+1
= (−q; q)∞.

The proofs of the finite versions can be found in [7]. In the next two sections, we give
the main ideas of the recurrence proof of Theorem 7 and the bijective proof of Theorem 8.

2 Idea of the proof of Theorem 7 using recurrences

In this section, we give a sketch of proof of Theorem 7 using recurrences based on the
difference condition from matrices C from (1.3) and P from (1.6). The complete proof
can be found in [7]. In the following, we will often omit the variables q, a, b, c, d in
GC

k (q; a, c, d) and GP
k (q; a, b, c, d).
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We start with Capparelli’s identity. By using the order (1.2) and the difference con-
ditions from (1.3), we do a classical combinatorial reasoning which consists in removing
the largest part of the partition, and obtain three equations:

GC
kd
− GC

kc
= dqk

(
aqkGC

(k−2)d
+ GC

(k−1)c

)
, (2.1a)

GC
kc
− GC

ka
= cqkGC

(k−1)c
, (2.1b)

GC
ka
− GC

(k−1)d
= aqkGC

(k−2)d
. (2.1c)

Combining these equations, we get the following recurrence equation for k ≥ 1:

GC
kd
=
(

1 + cqk
)

GC
(k−1)d

+
(

aqk + dqk + adq2k
)

GC
(k−2)d

+ adq2k−1
(

1− cqk−1
)

GC
(k−3)d

.
(2.2)

Together with the initial conditions

GC
0d

= 1, GC
−1d

= 1, GC
−2d

= 0, (2.3)

the recurrence equation (2.2) completely determines GC
kd
(q; a, c, d) for k ≥ 1.

Let us now introduce the sequence (Hk(q; a, b, c, d)) defined by the following recur-
rence equation for k ≥ 0 :(

1− cqk
) (

1− bqk+1
)

Hk(q; a, b, c, d) = (1− bcq2k)Hk−1(q; a, b, c, d)

+ (aqk + dqk + adq2k)Hk−2(q; a, b, c, d)

+ adq2k−1Hk−3(q; a, b, c, d),

(2.4)

and the initial conditions

H−1(q; a, b, c, d) = 1, H−2(q; a, b, c, d) = 0, H−3(q; a, b, c, d) =
(b− 1)cq

ad
.

This completely determines (Hk(q; a, b, c, d)).
We can relate GC

kd
(q; a, c, d) to Hk(q; a, c, c, d) with the following lemma.

Lemma 1. For all k ≥ 0,
GC

kd
(q; a, c, d)

(cq; q)k+1
= Hk(q; a, c, c, d).

The proof simply consists in showing that
(

GC
kd
(q;a,c,d)

(cq;q)k+1

)
satisfies the same recurrence

relation and initial conditions as (Hk(q; a, c, c, d)).
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Let us now turn to Primc’s identity. Using again a combinatorial reasoning on the
largest part of partitions satisfying the difference conditions from (1.6), we obtain a
recurrence satisfied by GP

kd
(q; a, b, c, d) for k ≥ 2:

(1− cqk)GP
kd
=

1− bcq2k

1− bqk GP
(k−1)d

+
aqk + dqk + adq2k

1− bqk−1 GP
(k−2)d

+
adq2k−1

1− bqk−2 GP
(k−3)d

,
(2.5)

and initial conditions

GP
−1d

= 1− b, GP
0d

= 1, GP
1d

=
bq

1− bq
+

(1 + aq)(1 + dq)
1− cq

.

This completely determines
(

GP
kd

)
.

As for Capparelli’s identity, we relate GP
kd
(q; a, b, c, d) and Hk(q; a, b, c, d).

Lemma 2. For all k ≥ 0,

GP
kd
(q; a, b, c, d)

1− bqk+1 = Hk(q; a, b, c, d).

Finally, combining Lemmas 1 and 2 in which we set b = c, we get that for all k ≥ 0,

GC
kd
(q; a, c, d)

(cq; q)k+1
= Hk(q; a, c, c, d) =

GP
kd
(q; a, c, c, d)

1− cqk+1 .

Simplifying completes the proof of Theorem 7.

3 Bijective proof of Theorem 8

In this section, we give a bijection between partition pairs counted by C(n; k; i, j, `) and
partitions counted by P(n; k; i, j, `). Due to space constraints, we omit some justifications
which can be found in [7].

Let (λ, µ) be a partition pair of total weight n, where λ ∈ C and µ is an unrestricted
partition coloured c, having in total i parts coloured a, j parts coloured c, ` parts coloured
d, and largest part at most k. We transform (λ, µ) into a partition in P by following the
steps below.

To make the bijection easier to follow, we will illustrate each step on the example

λ = 8d + 8a + 6c + 5c + 3d + 1a,
µ = 8c + 8c + 7c + 5c + 3c + 2c + 2c + 1c + 1c.
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Step 0: Change the colour of all the parts of µ to b. We obtain a partition pair (λ, µ′).
On our example, we get

λ = 8d + 8a + 6c + 5c + 3d + 1a,
µ′ = 8b + 8b + 7b + 5b + 3b + 2b + 2b + 1b + 1b.

This process is clearly reversible.

Step 1: Insert the parts of µ′ in the partition λ according to the order (1.5) of Primc’s
identity. Call ν1 the resulting partition. In our example, we obtain

ν1 = 8d + 8b + 8b + 8a + 7b + 6c + 5c + 5b + 3d + 3b + 2b + 2b + 1b + 1b + 1a.

This process is also clearly reversible, as one can simply separate the b-parts from the
rest to recover the partitions λ and µ′.

The partition ν1 satisfies the difference conditions in the matrix

M1 =


a b c d

a 2 1 2 2
b 0 0 1 1
c 1 0 1 2
d 0 0 1 2

, (3.1)

together with the following additional conditions for all m ≥ 1:

(C1) ma and (m− 1)a cannot both be parts of ν1,

(C2) mc and ma cannot both be parts of ν1,

(C3) mc and (m− 1)d cannot both be parts of ν1,

(C4) md and (m− 1)d cannot both be parts of ν1.

Note that in ν1, the c-parts can only appear once, while the b-parts can repeat.

Step 2: By the difference conditions satisfied by ν1, if ma or md appears in ν1 (they
can both appear at the same time), then mc cannot appear, but mb can appear arbitrarily
many times. If there are such mb’s, transform them all into mc’s. Call ν2 the resulting
partition. In our example, we obtain

ν2 = 8d + 8c + 8c + 8a + 7b + 6c + 5c + 5b + 3d + 3c + 2b + 2b + 1c + 1c + 1a.

This process is again reversible: to obtain ν1 from ν2, change all the mc’s which appear
at the same time as a ma or md into mb’s.
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The partition ν2 satisfies the difference conditions in the matrix

M2 =


a b c d

a 2 1 2 2
b 1 0 1 1
c 0 0 0 2
d 0 1 0 2

, (3.2)

together with the following additional conditions for all m ≥ 1:

(C′1) md and mb cannot both be parts of ν2,

(C′2) mc can repeat if and only if it appears at the same time as md or ma,

(C′3) mc and (m− 1)d cannot both be parts of ν2.

Step 3: If in ν2 there is a part mc followed by an arbitrary number of parts mb, then
change all these parts to mc. Call ν3 the resulting partition. In our example, we obtain

ν3 = 8d + 8c + 8c + 8a + 7b + 6c + 5c + 5c + 3d + 3c + 2b + 2b + 1c + 1c + 1a.

This step is also reversible. To obtain ν2 from ν3, search for all the parts mc that repeat
but do not appear at the same time as ma or md, and change the colour of all but the first
of these c-parts to b.

The partition ν3 belongs to P . Therefore, we have established a bijection between
the partition pairs counted by C(n; k; i, j, `) and the partitions counted by P(n; k; i, j, `).
Theorem 8 is proved.
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