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On the Schur positivity of sums of power sums

Sheila Sundaram∗
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Abstract. Let T be a nonempty subset of positive integers and pn the nth power sum
symmetric function. Consider the multiplicity-free sum of power sums FT

n = ∑λ`n pλ,
where the sum ranges over all partitions of n with parts in the set T. We define a new
symmetric function fT and give two descriptions of the (possibly virtual) symmetric
group representation associated to the series ∏n∈T(1− pn)−1 = ∑n≥0 FT

n : one in terms
of the Lie representation, and another as the symmetric or exterior power of (again
possibly virtual) modules induced from centralisers of the symmetric group.

When T = {1}, the degree n term of fT reduces to the Frobenius characteristic of
the Lie representation Lien. At the other extreme, when T is the set of all positive
integers, it is the conjugacy action of Sn. The function fT allows us to unify previous
results on the Schur positivity of multiplicity-free sums of power sums, as well as
investigate new ones. We also uncover some curious plethystic relationships between
the conjugacy action and the Lie representation.

Finally we establish some special cases of an earlier conjecture of this author on the
Schur positivity of sums of power sums in the intervals [(1n), µ] in reverse lexico-
graphic order.

Keywords: Schur positivity, plethysm, Lie representation, conjugacy action, symmetric
and exterior powers

1 Introduction

In this paper we investigate the positivity of the row sums in the character table of
Sn. For each irreducible character χλ indexed by a partition λ of n, and any subset T
of the conjugacy classes, one can form the sum ∑µ∈T χλ(µ), and ask when this sum is
nonnegative. In the language of symmetric functions, one asks for what subsets T of
partitions of n the sum of power sums ∑µ∈T pµ is the Frobenius characteristic of a true
representation of Sn, i.e. a symmetric function with nonnegative integer coefficients in
the basis of Schur functions. A method for generating such classes of subsets T was
presented in [7].
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We present a new approach to the Schur positivity problem for power sums. Specifi-
cally, we give a general formula which expresses the product ∏n∈T(1− pn)−1 as a sym-
metrised module over a sequence of possibly virtual representations f T

n , having the spe-
cific property that their characters vanish unless the conjugacy class has all cycles of
equal length. The goal then is to determine for what choices of the set T the f T

n are true
Sn-modules, thereby establishing the Schur positivity of the product ∏n∈T(1− pn)−1.
The module Lien, the Sn-module afforded by the multilinear component of the free Lie
algebra on n generators, plays a prominent role in the construction. In particular we
describe simple relationships (see Theorem 3.3 and equations (3.6) and (3.9) with q = 2)
between Lien, the conjugacy action, and the variant Lie(2)n . This variant was the subject
of [5], and was shown to have remarkable properties in [8].

In the course of these calculations many interesting plethystic identities emerge, as
well as many new conjectures on Schur positivity.

2 Preliminaries

Recall [2] that the Sn-module Lien is the action of Sn on the multilinear component of the
free Lie algebra, and coincides with the induced representation exp(2iπ

n ) ↑Sn
Cn

, where Cn
is the cyclic group generated by an n-cycle in Sn.

Another module that will be of interest is the Sn-module Conjn afforded by the con-
jugacy action of Sn on the class of n-cycles. Clearly we have Conjn ' 1 ↑Sn

Cn
.

We follow [1] and [4] for notation regarding symmetric functions. In particular, hn,
en and pn denote respectively the complete homogeneous, elementary and power sum
symmetric functions. If ch is the Frobenius characteristic map from the representation
ring of the symmetric group Sn to the ring of symmetric functions with real coefficients,
then hn = ch(1Sn) is the characteristic of the trivial representation, and en = ch(sgnSn

)
is the characteristic of the sign representation of Sn. If µ is a partition of n then define
pµ = ∏i pµi ; hµ and eµ are defined multiplicatively in analogous fashion. As in [1], the
Schur function sµ indexed by the partition µ is the Frobenius characteristic of the Sn-
irreducible indexed by µ. Finally, ω is the involution on the ring of symmetric functions
which takes hn to en, corresponding to tensoring with the sign representation.

By a slight abuse of notation we will also write Lien (resp. Conjn) to mean the Frobe-
nius characteristic of the representation Lien (resp. Conjn). Let µ(d) denote the number-
theoretic Möbius function, and φ(d) the Euler totient function. The following facts are
well known (see [2]).
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Lien = ch exp(
2iπ
n

) ↑Sn
Cn

=
1
n ∑

d|n
µ(d)p

n
d
d ; (2.1)

Conjn = ch 1 ↑Sn
Cn

=
1
n ∑

d|n
φ(d)p

n
d
d (2.2)

If q and r are characteristics of representations of Sm and Sn respectively, they yield
a representation of the wreath product Sm[Sn] in a natural way, with the property
that when this representation is induced up to Smn, its Frobenius characteristic is the
plethysm q[r]. For more background about this operation, see [1]. We will make exten-
sive use of the properties of this operation, in particular the fact that plethysm with a
symmetric function r is an endomorphism on the ring of symmetric functions [1, (8.3)].
See also [4, Chapter 7, Appendix 2, A2.6]. Define the symmetric functions

H = ∑
i≥0

hi, E = ∑
i≥0

ei; (2.3)

Lie = ∑
i≥1

Liei; Conj = ∑
i≥1

Conji. (2.4)

We collect some of the key tools used to establish our results.
Let ψ(n) be any real-valued function defined on the positive integers. Define symmet-

ric functions fn by fn =
1
n ∑d|n ψ(d)p

n
d
d , and the associated polynomial in one variable, t,

by fn(t) =
1
n ∑d|n ψ(d)t

n
d .

Theorem 2.1. [7, Theorem 3.2] Let F = ∑n≥1 fn where fn is of the form described above, H(v) =
∑n≥0 vnhn and E(v) = ∑n≥0 vnen. We have the following plethystic generating functions:

H(v)[F] = ∏
m≥1

(1− pm)
− fm(v) (2.5)

E(v)[F] = ∏
m≥1

(1− pm)
fm(−v) (2.6)

The plethystic formulas in this abstract are also consequences of the following propo-
sitions:

Proposition 2.1. Let F = ∑n≥1 fn, G = 1 + ∑n≥1 gn be formal series of symmetric functions,
as usual with fn, gn being of homogeneous degree n. Then

H[F] = G ⇐⇒ E[F] =
G

G[p2]
=

(
p1

p2

)
[G].

Hence the exterior power of the series F may also be obtained as the symmetric power of another
series, namely, the plethysm
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H[
F

F[p2]
] = E[F] =

H[F]
H[F[p2]]

In particular if F is Schur-positive, then so is
G

G[p2]
.

Proposition 2.2. [8] The following pairs are plethystic inverses:

∑
n odd

g(n)pn and ∑
n odd

g(n)µ(n)pn, (2.7)

for any function g(n) defined on the positive integers, such that g(mn) = g(m)g(n);

∑
n≥1

Lien and
H − 1

H
= ∑

n≥1
(−1)n−1en. (2.8)

∑
n≥1

(−1)n−1ω(Lien) and H − 1 (2.9)

3 A formula for ∏n∈T(1− pn)−1

In this section we explore, for a fixed subset T of positive integers, the sum of power
sums resulting from the product ∏n∈T(1− pn)−1. (This product is 1 if T is the empty
set.)

Definition 3.1. Fix a nonempty subset T of the positive integers. Define, on the set of positive
integers, a function ψT by ψT(d) = ∑m|d, m∈T m µ

(
d
m

)
.

Definition 3.2. For each nonempty subset T of positive integers, define a sequence of (possibly
virtual) representations indexed by the subset T, with Frobenius characteristic

f T
n =

1
n ∑

d|n
ψT(d)p

n
d
d .

Set FT = ∑n≥1 f T
n . Finally let pT = ∑n∈T pn.

These definitions imply:

Lemma 3.1. f T
n (1) = 1 if and only if n ∈ T, and f T

n (1) = 0 otherwise.

Proof. Let us write δ(m ∈ T) for the indicator function of the set T, so that δ(m ∈ T) = 1
if m ∈ T, and is zero otherwise.

By definition of ψT, we have

ψT(n) = ∑
d|n

µ(
n
d
) d δ(d ∈ T).
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Hence Möbius inversion gives

nδ(n ∈ T) = ∑
d|n

ψT(d) = n f T
n (1),

i.e. f T
n (1) = δ(n ∈ T) as claimed.

With this lemma and Theorem 2.1 in Section 2, we can prove:

Theorem 3.1. Let T be a nonempty subset of the positive integers. Then:

H[FT] = ∏
n∈T

(1− pn)
−1 (3.1)

FT = pT[Lie] = ∑
m∈T

Lie[pm], or equivalently f T
n = ∑

m∈T
m|n

Lie n
m
[pm]. (3.2)

If GT = ∑k≥0 ∑m∈T Lie[pm·2k ], then

E[GT] = ∏
n∈T

(1− pn)
−1 = H[FT]. (3.3)

Corollary 3.1. If either FT or GT is Schur-positive, then so is

∏
n∈T

(1− pn)
−1 = ∑

λ∈Par
λi∈T

pλ.

Recall from [5] the following definitions:

Definition 3.3. Let S = {q1, . . . , qk, . . .} be a set of distinct primes. Every positive integer n
factors uniquely into n = Qn`n where Qn = ∏q∈S qaq(n) for nonnegative integers aq(n), and
(`n, q) = 1 for all q ∈ S. We associate to the set S two symmetric functions, defined as follows.
For each n ≥ 1 :

LS
n =

1
n ∑

d|n
ψ(d)p

n
d
d with ψ(d) = φ(Qd)µ(`d), and (3.4)

LS̄
n =

1
n ∑

d|n
ψ̄(d)p

n
d
d with ψ̄(d) = φ(`d)µ(Qd). (3.5)

Note that LS̄
n = LT

n where T is the set of primes not in S.

Theorem 3.2. [5, Theorem 3.2], [8, Theorem 3.1, Definition 3.2] The symmetric functions LS
n

and LS̄
n are Frobenius characteristics of true Sn-modules, and are thus Schur positive.



6 Sheila Sundaram

When S consists of a single prime {q}, we write LS
n = Lie(q)n . The particular case q = 2

was investigated extensively in [5] and [8]. In that case, the Sn-module Lie(2)n was shown
to have remarkable properties closely parallelling those of the Lie representation.

We illustrate Theorem 3.1 and the functions f T
n by examining the following special

cases:

1. If T = {1}, then ψT(d) = µ(d) and f T
n corresponds to the representation Lien.

In this case (3.1) of Theorem 3.1 gives the classical result of Thrall and Poincaré-
Birkhoff-Witt [2]:

H[Lie] = (1− p1)
−1,

and (3.3) gives the surprising exterior power analogue for the variant Sn-modules
Lie(2)n studied in [5] and [8]:

E[Lie(2)] = (1− p1)
−1.

2. If T is the set of all positive integers, then ψT(d) = φ(d) by Möbius inversion of the
well-known identity m = ∑d|m φ(d). Thus f T

n is the characteristic of the conjugacy
action on the class of n-cycles 1 ↑Sn

Cn
, i.e. f T

n = Conjn. Now (3.1) of Theorem 3.1
reduces to a theorem of Solomon [3]:

H[Conj] = ∏
n≥1

(1− pn)
−1 = ∑

λ`n,n≥0
pλ.

Also (3.3) reduces to a result of this author, first proved in [7], implying Schur
positivity of the right-hand side below:

E[Conj] = ∏
n≥1,n odd

(1− pn)
−1 = ∑

λ`n,n≥0,λi odd
pλ.

3. Fix a set S of primes. Let T be the set of all integers whose prime factors are all
in S. Then clearly if d ∈ T, ψT(d) = φ(d) by the identity used above. Otherwise
d = Qd`d with Qd ∈ T and `d relatively prime to Qd and also relatively prime to
all integers in T. Hence, since µ is multiplicative, Definition 3.1 gives

ψT(d) = ∑
m∈T

mµ(Qd/m)µ(`d) = µ(`d) · ∑
m∈T

mµ(Qd/m) = µ(`d)ψ
T(Qd),

Since Qd ∈ T, we obtain ψT(d) = µ(`d)φ(Qd), which is precisely the formula given
by (3.4). Thus f T

n = LS
n. Setting LS = ∑n≥1 LS

n, and defining P(S) to be the set of
positive integers whose prime factors are a subset of S, (3.1) becomes the result of
[8, Theorem 3.5], again establishing Schur positivity of the sum on the right. (Note
that 1 ∈ P(S).)

H[LS] = ∏
n∈P(S)

(1− pn)
−1 = ∑

λ∈Par:λi∈P(S)
pλ.
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From Theorem 3.1 and the preceding observations, we have the following decompo-
sitions of the representations Conjn, Lie(q)n :

Theorem 3.3.
∑

m≥1
pm[Lie] = ∑

n≥1
Conjn; (3.6)

∑
m≥1

pm = ∑
n≥1

Conjn[∑
r≥1

(−1)r−1er] (3.7)

The plethystic inverse of Conj is

(∑
n≥1

Conjn)〈−1〉 = ∑
r≥1

(−1)r−1er[∑
n≥1

µ(n)pn]. (3.8)

Let q be prime, and let n = `qk where (`, q) = 1. Then

Lie(q)n =
k

∑
r=0

Lie`qk−r [pqr ]. (3.9)

The plethystic inverse of Lie(q) is

∑
n≥1

(Lie(q)n )〈−1〉 = Lie〈−1〉[p1 − pq] = (∑
r≥1

(−1)r−1er)[p1 − pq]. (3.10)

Computations for q = 2, 3, 5 (verified for n ≤ 32, n ≤ 27 and n ≤ 25 respectively)
support a curious conjecture on the partial sums in (3.9):

Conjecture 1. Fix a prime q and n = `qk where (q, `) = 1. Define Wi = ∑i
r=0 Lie`qk−r [pqr ].

Then Wi is Schur-positive for all i = 0, . . . , k. Note that the Wi are all modules of dimension
(n− 1)!, and W0 = Lien, while Wk = Lie(q)n .

The construct of Definition 3.2 allows us to remove the restriction that q be prime, as
follows. Let k ≥ 2 be any positive integer, and take T to be the set of all nonnegative
powers of k. In this case Theorem 3.1 gives

H[∑
n≥1

f T
n ] = ∏

r≥0
(1− pkr)−1, ∑

n≥1
f T
n = ∑

r≥0
pkr [Lie]. (3.11)

By inverting this equation plethystically, we obtain the recurrence

For k ≥ 2, f T
n =

{
Lien + f T

n
k
[pk], k|n;

Lien, otherwise,
(3.12)

However computations show that for k = 4, f T
n is not Schur-positive when n = 4, 16,

and the degree 16 term in the product ∏r≥0(1− p4r)−1 is not Schur-positive. In both
cases it is the sign representation that appears with coefficient (−1).
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Conjecture 2. For any ODD positive integer k, f T
n as defined above is Schur-positive.

Conjecture 3. The product ∏r≥0(1− pkr)−1 is Schur-positive for any ODD positive integer k.

Fix k ≥ 2 and consider the subset T = {1, k}. It was shown in [7, Theorem 4.23] that
the symmetric function

Wn,k = ∑
µ`n,µi=1 or k

pµ

is Schur-positive. Define W0,k = 1. Then

∑
n≥0

Wn,k = ∏
n∈T

(1− pn)
−1 = (1− p1)

−1(1− pk)
−1.

For k = 1 we set Wn,1 = pn
1 for all n ≥ 0, so that the preceding equation reduces, as

expected, to

∑n≥0 Wn,1 = ∏n∈T(1− pn)−1 = (1− p1)
−1.

Proposition 3.1. If T = {1, k} and k ≥ 2, then

f T
n =

{
Lien + Lie n

k
[pk], k|n;

Lien, otherwise,
(3.13)

and hence ∑n≥0 Wn,k = H[∑n≥0 f T
n ].

If k is prime, then f {1,k}
n = ch(exp 2kiπ

n )
xSn

Cn
= `

(k)
n , and hence the symmetric function

defined by (3.13) is Schur-positive.

Proof. Equation (3.13) is immediate from Theorem 3.1. Now let k be prime. It was shown
in [7, Lemma 5.5, Theorem 5.6] (see also Theorem 3.6 below) that the following identity
holds:

∑
λ`n:λi=1,k

pλ = H[ ∑
m≥1

ch (exp(
2πik

n
) ↑Sn

Cn
)]|deg n,

and thus the left-hand side is precisely pT for k prime and T = {1, k}. But H − 1 is
invertible with respect to plethysm (see Proposition 2.2), so H[F] = H[G] if and only if
F = G. Hence f T

n must coincide with `
(k)
n = ch(exp 2kiπ

n )
xSn

Cn
.

Computations indicate that

Conjecture 4. f {1,k}
n is Schur-positive for k = 2 and for all odd k ≥ 3. (This is trivially true if

k = 1.)
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When k is even and not equal to 2, this fails. For instance, if n = k = 4m, it is easy
to see that Lie4m + p4m contains the sign representation with coefficient (−1). However
we have H[F{1,k}] = (1− p1)

−1(1− pk)
−1, which we know to be Schur-positive from [7,

Proposition 4.23]. This example shows that it is not always possible to write a Schur pos-
itive sum of power sums as a symmetrised module over a sequence of true Sn-modules,
since Liek + pk fails to be Schur-positive when k is even.

Theorem 3.4. Let k ≥ 2 and T = {n : n ≤ k}. Then

f T
n =

k

∑
m=1
m|n

Lie n
m
[pm] and

k

∏
n=1

(1− pn)
−1 = H[∑

n
f T
n ]. (3.14)

Corollary 3.2. Let T = {n : n ≤ k}, k ≥ 2. If n is prime, or n = k, or n > k and n is such that
its greatest proper divisor is at most k, then f T

n is Schur-positive.

Conjecture 5. (See also [7, Conjecture 1].) f {1,...,k}
n is Schur positive for all n and k, and hence

so is ∏k
n=1(1− pn)−1.

Theorem 3.5. Let k ≥ 2 and T = {n : n|k}. Then

f T
n = ∑

m|(k,n)
Lie n

m
[pm] and ∏

n|k
(1− pn)

−1 = H[∑
n

f T
n ].

For k ≥ 2 recall from Proposition 3.1 that `(k)n denotes the characteristic of the Foulkes
character ch (exp(2πik

n ) ↑Sn
Cn
).

Theorem 3.6. [7, Lemma 5.5, Theorem 5.6] The following sum is Schur-positive:

∑
λ`n:λi|k

pλ = H[ ∑
m≥1

`
(k)
m ]|deg n.

In particular we immediately have

Corollary 3.3.
`
(k)
n = ch exp(2iπ · k/n) ↑Sn

Cn
= ∑

m|(k,n)
Lie n

m
[pm].

Hence we have the following curious decomposition of the regular representation
into virtual representations:

Corollary 3.4.

pn
1 =

n

∑
k=1

∑
m|(k,n)

Lie n
m
[pm] = ∑

d|n
d Lied[p n

d
]. (3.15)
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Proof. The first sum can be rewritten as

∑
m|n

m
n

∑
r=1

k=rm≤n

Lie m
n
[pm] = ∑

m|n

m
n

Lie m
n
[pm].

The result now follows from the well-known decomposition [2, Theorem 8.8] pn
1 =

∑n
k=1 `

(k)
n of the regular representation, and the preceding corollary.

Theorem 3.7. Let T = {n : n ≡ 1 mod k}. Then

f T
n = ∑

m≡1 mod k
m|n

Lie n
m
[pm] and ∏

n≡1 mod k
(1− pn)

−1 = H[∑
n

f T
n ].

After seeing an early version of [7], Richard Stanley made the following conjecture,
verifying it for n ≤ 24 and k ≤ 6.

Conjecture 6. (R. Stanley, 2015) ∏n≡1 mod k(1− pn)−1 is Schur-positive for all k.

Note that Conjecture 6 holds for k = 2. We have two different ways of identifying the
associated Sn-module.

Theorem 3.8. [7], [5] and [8, Corollary 3.11]

∏
n≡1 mod 2

(1− pn)
−1 = E[Conj] = H[L(2)].

The equivalence of the two plethystic expressions is a consequence of Proposition 2.1
in Section 2. In this case, writing podd for ∑n odd pn, we have the identity podd[Lie] = L(2),
and hence:

Theorem 3.9. ∑m odd
m|n

Lie n
m
[pm] = podd[Lie]|deg n is Schur-positive; it is the Frobenius charac-

teristic L(2)
n of the representation exp(2iπ`/n) ↑Sn

Cn
, where n = 2k · ` and ` is odd.

Proof. This is clear by using (2.8) of Proposition 2.2 since the symmetric powers of the
two modules coincide, both being equal to ∏n odd(1− pn)−1.

The module Lie(2)n whose many intriguing properties are described in [5] and [8],
makes an appearance in the decomposition of the module Conjn of the conjugacy action
on the class of n-cycles as well. In fact Theorem 3.3 leads to several different decompo-
sitions of Conjn, some of which we collect in the following:
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Theorem 3.10. For any prime q, we have

∑
n

Conjn = ∑
n

q does not divide n

pn[Lie(q)], (3.16)

and hence the sum on the right is Schur-positive.
In fact for any positive integer q we have

∑
n

Conjn = ∑
n

q does not divide n

pn[∑
k≥0

Lie[pqk ]]. (3.17)

4 Reverse Lexicographic Order

The previous sections focused on sums of power sums for partitions with restricted parts.
In our original paper [7], however, other families of sums were considered, and shown
to be Schur positive by identifying the sum as the characteristic of actual Sn-modules.
In this section we describe partial progress on a conjecture of [7]. More details and a
numerical analysis of the number of such Schur positive families can be found in [9].

Recall that the reverse lexicographic order on partitions is defined as follows [1, p. 6].
For partitions λ, µ of the same integer n, we say a partition λ is preceded by a partition
µ in reverse lexicographic order if λ1 > µ1 or there is an index j ≥ 2 such that λi = µi
for i < j and λj > µj. Thus for n = 4 we have the total order (14) < (2, 12) < (22) <
(3, 1) < (4). In particular our convention is that the minimal and maximal elements in
this total order are (1n) and (n) respectively.

Conjecture 7. [7, 9, Conjecture 1] Let Ln denote the reverse lexicographic ordering on the set
of partitions of n. Then the sum of power sum symmetric functions ∑ pλ, taken over any initial
segment of the total order Ln, i.e. any interval of the form [(1n), µ] for fixed µ, (and thus
necessarily including the partition (1n)), is Schur-positive.

We are able to prove the following special cases of this conjecture.

Theorem 4.1. [9, Theorem 18, Theorem 23, Proposition 36] The symmetric function ψµ =

∑(1n)≤λ≤µ pλ is Schur-positive if µ ≤ (3, 1n−3) or µ ≥ (n − 4, 14) in reverse lexicographic
order, and also if µ = (3, 2k, 1r) for k ≥ 1 and 0 ≤ r ≤ 2.

By a theorem of Solomon [3], ψ(n) = ψn is the Frobenius characteristic of Sn acting
on itself by conjugation. The proof for the Schur positivity of ψµ when µ lies in the
interval [(1n), (3, 1n−3)] relies on some interesting symmetric function identities that we
believe are new. The other half of this theorem is established by using bounds on the
multiplicity of the irreducibles occurring in ψn. Specifically, we use
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Theorem 4.2. [6, Theorem 5.1] Let n 6= 4, 8. Then the conjugacy class indexed by a partition λ

contains all irreducibles if and only if λ has at least two parts, and all its parts are distinct and
odd. If n = 8, the conjugacy class indexed by (7, 1) contains all irreducibles, while the class of
the partition (5, 3) contains all irreducibles except those indexed by (42) and (24).

This in turn allows us to establish the following bounds:

Lemma 4.1. [6, Lemma 2.6] Let n ≥ 5. Let don denote the number of partitions of n with at
least two parts and with all parts odd and distinct. In the conjugacy representation ψn, every

irreducible except possibly the sign occurs with multiplicity at least

{
4 + don, n odd;
3 + don, n even.

This

number is at least 5 for odd n ≥ 7, and at least 4 for even n ≥ 6.

The proof of Theorem 4.1 then proceeds by a careful (and tedious) analysis showing
that the multiplicity of any irreducible in ψµ cannot exceed the above bounds in absolute
value. In contrast to the previous proofs of Schur positivity, we are unable to identify
a representation-theoretic context for this symmetric function. It would of course be of
interest to find such a context.

Finally, we remark (see [9]) that it is easy to find counterexamples showing that the
analogous conjecture is false for dominance order.
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