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A bijection for Shi arrangement faces
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Abstract. The Shi arrangement of hyperplanes in Rn is known to have (n + 1)n−1

regions. This remarkable formula was first derived algebraically in 1986 by Shi, and
has since been explained bijectively through either parking functions or Cayley trees.
Although the lower-dimensional faces have been counted by a finite field method, no
bijective correspondence has been established. In this paper, we extend a bijection for
regions defined by Bernardi to obtain a correspondence for all Shi faces graded by
their dimension. The image of the bijection is a set of decorated binary trees, which
can further be converted to a simple set of functions f : [n− 1] → [n + 1] known as
Prüfer sequences. In the process, we also obtain a correspondence for the faces of the
Catalan arrangement, and the results generalize to both extended arrangements.
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1 Introduction

Much is known about the enumeration of the regions of hyperplane arrangements. Basic
references are [4] and [8]. Less is known about the lower-dimensional faces, which are
the focus of this paper. In particular, we show that the faces of the Catalan and Shi
arrangements are in bijection with certain decorated binary trees. We begin with some
basic definitions before stating the result.

1.1 Hyperplane Arrangements

A hyperplane arrangement is a finite collection of affine hyperplanes in Rn for some n ≥ 1.
The regions of an arrangement are the connected components of the complement of its
hyperplanes. The braid arrangement in Rn is the collection of hyperplanes

xi − xj = 0, for 1 ≤ i < j ≤ n. (1.1)

It is not hard to see that there are n! regions. The Shi arrangement in Rn is the collection
of hyperplanes

xi − xj = 0, 1, for 1 ≤ i < j ≤ n. (1.2)
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Figure 1: The braid, Shi, and Catalan arrangements2 in R3.

It is known that there are (n + 1)n−1 regions, which was first derived algebraically by
Shi [5] in 1986, and later re-proved bijectively [2, 3, 6]. The Catalan arrangement in Rn is
the collection of hyperplanes

xi − xj = −1, 0, 1, for 1 ≤ i < j ≤ n. (1.3)

There are n!Catn regions, where Catn = (2n)!
n!(n+1)! is the nth Catalan number. This result

first appeared in [6], where it is obtained by defining a bijection from the regions to
labelled semiorders. All three arrangements are shown in Figure 1 with n = 3.

1.2 Faces

A face of a hyperplane arrangement is the solution set to a (non-void) system of equalities
and inequalities, one for each hyperplane. The dimension of a face is the dimension of
its affine span. The regions are the highest-dimensional faces. Viewing the regions as
polyhedra, the faces of the arrangement are the faces of these polyhedra. We refer to the
faces of the braid (resp. Shi, Catalan) arrangement as braid (resp. Shi, Catalan) faces.

An ordered set partition of a set X is an ordered tuple of disjoint nonempty sub-
sets whose union equals X. Here and throughout we use the notation [n] for the set
{1, 2, . . . , n}. The braid faces are in bijection with ordered set partitions of [n], giving the
counting formula k!S(n, k) for faces of dimension k = 1, 2, . . . , n (see [8, Exercise 2.10]),
where S(n, k) are the Stirling numbers of the second kind.

It is not so easy to count the faces of the Shi and Catalan arrangements. In 1996,
Athanasiadis devised an innovative extension to the finite field method, and thereby
obtained counting formulae for the number of faces. One of his results is the following:

2Technically speaking, Figure 1 displays the induced hyperplane arrangements in the vector space
{(x1, x2, x3) ∈ R3 | ∑ xi = 0} ∼= R2. Such induced arrangements are referred to as essentializations.
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Theorem 1.1 ([1, Thm 8.2.1]). The number of k-dimensional faces of the Shi arrangement in
Rn is (

n
k

) n−k

∑
i=0

(
n− k

i

)
(−1)i(n− i + 1)n−1, 1 ≤ k ≤ n. (1.4)

Athanasiadis remarked that, by inclusion-exclusion, the formula (1.4) enumerates the
set ( f , S) |

f : [n− 1]→ [n + 1]
S ⊂ Im( f )r {n + 1}
|S| = n− k

 , (1.5)

where Im( f ) denotes the image of f . He asked if a bijective explanation could be given;
indeed, one of the main results of this paper is such an explanation.

1.3 Main Result

First, we obtain a bijection between the faces of the Catalan arrangement and a set of
decorated binary trees. Second, we modify the bijection to give a bijection between
the faces of the Shi arrangement and a simple subset of these trees (namely, those that
decrease to the right). See Figure 2 for some examples. Our bijection (and overall
method) is an extension of an approach for regions due to Bernardi [3]. Thirdly, we are
able to obtain the set of functions (1.5) by applying some simple bijective manipulations
to the trees corresponding to the Shi faces.

Our results extend to a general family of hyperplane arrangements, indexed by an
integer parameter m > 0. The m-Catalan arrangement in Rn is the collection of hyper-
planes

xi − xj = −m,−m + 1, . . . , m− 1, m, for 1 ≤ i < j ≤ n. (1.6)

The m-Shi arrangement in Rn is the collection of hyperplanes

xi − xj = −m + 1, . . . , m− 1, m, for 1 ≤ i < j ≤ n. (1.7)

These arrangements are known as the extended arrangements, and the classical arrange-
ments correspond to the case m = 1. For any m > 0, we obtain an explicit bijection from
the faces of these arrangements to certain decorated (m + 1)-ary trees. In the m-Shi case,
we also obtain a set of functions analogous to those in (1.5). The counting formulae were
already found by Athanasiadis, but the bijective correspondences are new.
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Figure 2: The correspondence between two-dimensional faces of the Shi arrangement
in R3 and [3]-decorated binary trees with exactly one solid right edge such that all
right internal edges are descents.

1.4 Outline

In Section 2 we define the bijection between the Catalan faces and a simple set of trees. In
Section 3 we adjust the bijection to obtain one between the Shi faces and a simple subset
of the trees. In Section 4 we explain the additional steps to obtain the set of functions
(1.5). In Section 5 we state the general results for extended arrangements. Enumerative
consequences (generating functions, counting formulae) are stated in Section 6 for a
general m.

2 From Catalan Faces To Trees

In this section we define the map between faces of the Catalan arrangement and the
appropriate set of trees.
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2.1 Decorated Trees

A Cayley tree (or just tree) is a finite connected acyclic graph, with vertex set [n] for some
n ≥ 1. A rooted tree is a tree with a distinguished vertex called its root. We adopt
the usual vocabulary of parents, children, leaves (vertices with no children), and nodes
(vertices with some children). A rooted plane tree is a rooted tree with a chosen ordering
of the children of each node. A binary tree is a rooted plane tree where each vertex has
exactly zero or two children. For binary trees, the first child of a node is called its left
child, and the second is called its right child. The edge connecting a parent to its left (resp.
right) child is called a left (resp. right) edge. An internal edge is one between two nodes.

The next definition furnishes the domain for our bijection to Catalan faces.

Definition 2.1. An [n]-decorated binary tree is a binary tree together with the following
decorations:

• Each node is labelled with a non-empty subset of [n]. Together, the set of labels forms a
partition of [n].

• Internal right edges are of two types: solid and dashed.

Note that an [n]-decorated binary tree has anywhere up to n nodes. The main result
of this section is a bijection from the set of [n]-decorated binary trees to the faces of the
Catalan arrangement in Rn.

2.2 The Bijection

Now we define the map:

ΦCatn : {[n]-decorated binary trees} → {Catalan faces in Rn}. (2.1)

The hyperplanes of the Catalan arrangement are all of the form xi = xj or xi = xj + 1
for some i, j ∈ [n]. Therefore, to specify an element of the image, one needs to specify
all of the equalities and inequalities between xi, xj, xi + 1, xj + 1 for all i, j ∈ [n]. These
are obtained by reading through the tree in a certain order. If v is any vertex in a binary
tree, let p(v) denote the word in the alphabet {L, R} obtained by traversing the unique
path from the root to v (L means left edge, R means right edge). Let pR(v) denote the
number of right edges used.

Definition 2.2. Let T be a binary tree and let v, w be two vertices. We say v ≺T w if either:

• pR(v) < pR(w) or

• pR(v) = pR(w) and p(v) <lex p(w), where <lex is the lexicographic ordering on words
with R < L.
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Figure 3: The ≺T order on the vertices of a
binary tree. The label of each vertex is its
place in the total order ≺T.
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Figure 3 shows the ≺T order for an (unlabelled) binary tree. Let T be a given [n]-
decorated binary tree, and for i ∈ [n] let

NT(i) := the node whose label contains i. (2.2)

We now define the face ΦCatn(T). Let i, j ∈ [n] be given, and follow the decision tree in
Figure 4 to obtain the relevant inequalities or equalities between xi, xj, xi + 1, and xj + 1.
We define ΦCatn(T) as the face arising from all of these inequalities or equalities.

Ni ≺T Nj?

Ni = Nj?

no

swap(i, j)
restart

no

xi = xj

yes

is Nj the dashed right-child of Ni?

yes

xi < xj
xi + 1 = xj

yes

is Nj ≺T the right-child of Ni?

no

xi < xj
xi + 1 > xj

yes

xi < xj
xi + 1 < xj

no

Figure 4: Definition of ΦCatn . We write Ni for NT(i) and Nj for NT(j).

Theorem 2.3. The map ΦCatn is a bijection between [n]-decorated binary trees and the faces of
the Catalan arrangement in Rn. Furthermore, the k-dimensional faces correspond to those trees
with k solid right edges.

We can prove Theorem 2.3 by explicitly constructing an inverse (omitted). The state-
ment about k-dimensional faces is a straightforward consequence of the definition. We
explore the implications of Theorem 2.3 in the next sections.

3 From Shi Faces To Trees

In this section, we obtain an analogue of Theorem 2.3 for the Shi arrangement. We say
an internal edge between nodes with labels S, T is a descent if max S > min T.
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Definition 3.1. An [n]-decorated binary tree is of Shi type if all its right internal edges are
descents.

Our main result is that [n]-decorated trees of Shi type are in bijection with Shi faces
in Rn.

3.1 The Bijection

Now we define the map:

ΦShin : {[n]-decorated binary trees of Shi type} → {Shi faces in Rn}. (3.1)

The hyperplanes of the Shi arrangement are of the form xi = xj or xi = xj + 1 but only
for 1 ≤ i < j ≤ n. If T is an [n]-decorated binary tree of Shi type, and 1 ≤ i < j ≤ n, we
specify the relevant equalities and inequalities as follows:

• If NT(i) = NT(j) then xi = xj.

• Else if NT(i) ≺T NT(j) then xi < xj, (and so xi < xj + 1 and we are done)

• Else, then NT(j) ≺T NT(i) and xj < xi, and

– If NT(i) is a dashed right-child of NT(j) then xi = xj + 1.

– Else if NT(i) ≺T the right child of NT(j), then xi < xj + 1.

– Else xi > xj + 1.

We define ΦShin(T) to be the face arising from all of these inequalities or equalities.
Equivalently, ΦShin(T) is the unique Shi face to which the face ΦCatn(T) belongs.

Theorem 3.2. The map ΦShin is a bijection between [n]-decorated binary trees of Shi type and
the faces of the Shi arrangement in Rn. Furthermore, the k-dimensional faces correspond to those
trees with k solid right edges.

The proof of Theorem 3.2 relies heavily on properties of ΦCatn . We briefly explain the
general ideas. Every face of the Catalan arrangement in Rn belongs to a unique face of
the corresponding Shi arrangement, so we say two Catalan faces f1, f2 are Shi-equivalent
if they belong to the same face of the Shi arrangement. The Shi faces are naturally in
bijection with these Shi equivalence classes. Then the crucial fact is the following:

Lemma 3.3. Each Shi equivalence class contains a unique face f such that Φ−1
Catn

( f ) is an [n]-
decorated tree of Shi type. Furthermore, all [n]-decorated trees of Shi type arise in this way.

The idea behind Lemma 3.3 is to first prove that ΦCatn respects the “local structure”
of a face, and then use an inductive argument to show that only one face has the “local
structure of Shi type.” It follows that there is a bijection between faces of the Shi ar-
rangement in Rn and [n]-decorated trees of Shi type. The map ΦShin gives the explicit
correspondence.
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Figure 5: The three bijections in Theorem 4.1. In this example, n = 9 and k = 5.

4 From Shi Faces To Functions

The original counting formula of Athanasiadis suggests that Shi faces correspond bi-
jectively to certain functions (see (1.5)). In this section, we explain how to obtain these
functions from our decorated trees.

Theorem 4.1. The faces of the Shi arrangement in Rn are in bijection with:

(1) The set of [n]-decorated binary trees such that all right internal edges are descents. The
k-dimensional faces correspond to the trees that have k solid right edges.

(2) The set of binary trees with n nodes, labelled by elements of [n], such that all right internal
edges are descents, together with a subset of marked nodes that have non-leaf left children.
The k-dimensional faces correspond to trees that have n− k marked nodes.

(3) The set of (unrooted) Cayley trees with n + 1 vertices, together with a subset of non-leaf
vertices, excluding n + 1. The k-dimensional faces correspond to trees that have n − k
marked nodes.

(4) The set of functions f : [n− 1] → [n + 1], together with a subset S ⊂ Im( f )r {n + 1}.
The k-dimensional faces correspond to the pairs such that |S| = n− k.

Item (1) is just Theorem 3.2. The rest are obtained sequentially. One example of the
chain of correspondences is shown in Figure 5. We start by describing a bijection from
(1) to (2). Let an [n]-decorated binary tree be given. There are two steps:

(i) We apply a local operation to every node.
Let v be a node, with left child Lv, right-
child Rv, and with label S = {s1, s2, . . . , sp}
with s1 < s2 < · · · < sp. Expand v accord-
ing to the diagram to the right. If the edge
from v to Rv is dashed, then the correspond-
ing edge from sp to Rv remains dashed.

S

Lv Rv

s1

s2

. . .

sp

Lv Rv
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(ii) Now we apply a local operation to each node with a dashed right edge. Let v be
such a node. First convert its dashed right edge to solid edge, and add v to the set
of marked nodes. Then, if the left child of v is a leaf, swap the two children of v.

This map has a clear inverse: for any marked node, if the left child is an ascent then we
undo step (i), and if it is a descent we undo step (ii). This establishes the bijection (1) to
(2).

To go from (2) to (3) we delete all right edges and all leaves from the binary tree,
and then add edges connecting each vertex to all of the vertices in the right path starting
from its left child. Finally, we add a node labelled n + 1 and connect it to the vertices of
the root’s right-path (including the root). The set of marked vertices is unchanged. Since
the right-paths are always decreasing, there is no loss of information, and this map is a
bijection.

Finally, we give the map (3) ↔ (4). Given a Cayley tree T with n + 1 vertices we
define a function f : [n − 1] → [n + 1] as follows: define f (1) to be the label of the
parent of the leaf vertex of T of minimum label. Then delete this leaf, and use the same
rule to define f (2), then f (3), and so on to f (n− 1) (deleting leaves at each stage). The
resulting function f is known as the Prüfer sequence of the tree T, and it can be shown
that this encoding is well-defined and bijective [7, Prop. 5.3.2]. For the subset S we take
the set of labels of the marked nodes of T. It follows from the definition of f that Im( f )
consists of all non-leaf vertices of T, whence S ⊂ Im( f ). The inverse of this map is given
by inverting the Prüfer sequence, and then marking the nodes recorded in S. Thus we
have a bijection (3)↔ (4).

5 Extended Arrangements

All of the results from the previous sections carry over to the m-Catalan and m-Shi
arrangements. In this section we state the bijective results. An m-ary tree is a rooted
plane tree where all vertices have zero or m children. We treat the children as ordered
left to right; in particular, the first child of a node is its leftmost child and the last child
is its rightmost child. The edge connecting a parent to its leftmost child (resp. rightmost
child) is called a leftmost (resp. rightmost) edge.

Definition 5.1. An [n]-decorated m-ary tree is an m-ary tree together with the following
decorations:

• Each node is labelled with a subset of [n]. Together, the set of labels forms a partition of [n].

• All internal edges except the leftmost are of two types: solid and dashed.

• If an edge is dashed, then all of the children to its right are leaves.
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Theorem 5.2. The faces of the m-Catalan arrangement in Rn are in bijection with [n]-decorated
(m + 1)-ary trees. Furthermore the k-dimensional faces correspond to those with k = #(nodes)−
#(dashed-edges).

Using the same “local structure” reasoning of Section 3, we obtain a set of trees for
the m-Shi faces. Additionally, the bijections in Section 4 can be generalized for any m,
giving the following result.

Theorem 5.3. The faces of the m-Shi arrangement in Rn are in bijection with:

(1) The set of [n]-decorated (m + 1)-ary trees such that all rightmost internal edges are de-
scents. The k-dimensional faces have k = #(nodes)− #(dashed-edges).

(2) The set of (m + 1)-ary trees with n nodes, labelled by [n], such that all rightmost internal
edges are descents, together with a subset of nodes that each has at least one node among its
first m children. The k-dimensional faces have a subset of size n− k.

(3) The set of Cayley trees with n + 1 vertices, with edges of m different colors, except all edges
incident to n + 1 are uncolored, together with a subset S of non-leaf vertices excluding
n + 1. The k-dimensional faces have a subset of size n− k.

(4) The set of functions f : [n− 1]→ [mn + 1] with a subset S ⊂ [n] such that Im( f )∩ [(i−
1)m + 1, im] 6= ∅ for all i ∈ S. The k-dimensional faces have |S| = n− k.

The proofs of Theorem 5.2 and Theorem 5.3 are fairly straightforward generalizations
of the m = 1 case.

6 Enumerative Consequences

In this section, we state functional equations for the exponential generating functions
of the face polynomials of the m-Catalan and m-Shi arrangements. We also give ex-
plicit counting formulae for the faces of any given dimension. These results are basic
corollaries of the bijective correspondences obtained in the previous sections.

6.1 Catalan Generating Function

We define the exponential generating function

Cm(x, y) := 1 + ∑
n≥1

xn

n!

n

∑
k=1

c(m)
n,k yk, (6.1)

where c(m)
n,k is the number of k-dimensional faces of the m-Catalan arrangement in Rn.
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Corollary 6.1. Let C stand for Cm(x, y). We have the functional equation

C = 1 + (ex − 1)
(
(1 + y)Cm+1 − C

)
. (6.2)

Furthermore, the number of k-dimensional faces of the m-Catalan arrangement in Rn is

c(m)
n,k =

n

∑
i=k

S(n, i)(i− 1)!
(

i
k

) i−k

∑
j=0

(−1)j
(

i− k
j

)(
i(m + 1)− jm

i− 1

)
. (6.3)

Equation (6.2) is obtained by decomposing the trees in Theorem 5.2 at the root. For-
mula (6.3) is obtained by counting separately the labels and the trees, by way of Lagrange
inversion and inclusion-exclusion. We omit the calculation here.

Remark 6.2. In the case m = 1 in (6.3), one can show by inclusion-exclusion that the inner
sum on j collapses to ( i+k

k−1). Thus the number of k-dimensional faces of the classical
Catalan arrangement in Rn is simply

c(1)n,k =
n

∑
i=k

S(n, i)(i− 1)!
(

i
k

)(
i + k
k− 1

)
. (6.4)

This formula was first obtained by Athanasiadis via a finite field method [1, Cor. 8.3.2].
Our argument gives a combinatorial explanation for each term, though we omit the
details here.

6.2 Shi Generating Function

We define the exponential generating function

Sm(x, y) := 1 + ∑
n≥1

xn

n!

n

∑
k=1

s(m)
n,k yk, (6.5)

where s(m)
n,k is the number of k-dimensional faces of the m-Shi arrangement in Rn.

Corollary 6.3. Let S stand for Sm(x, y). We have the functional equation

S = exp (x(1 + y)Sm − x) . (6.6)

Furthermore, the number of k-dimensional faces of the m-Shi arrangement in Rn is

s(m)
n,k =

(
n
k

) n−k

∑
i=0

(−1)i
(

n− k
i

)
(m(n− i) + 1)n−1. (6.7)
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Equation (6.6) is obtained by decomposing the trees in set (3) of Theorem 5.3, and the
formula (6.7) is obtained by applying inclusion-exclusion directly to the functions in set
(4) of Theorem 5.3. The counting formula (6.7) was first found via the finite field method
in [1, Thm. 8.2.1].

For small k, the functions in set (4) of Theorem 5.3 yield easy positive formulae. For
example, the number of one-dimensional faces of the m-Shi arrangement is simply

s(m)
n,1 = n!mn−1, (6.8)

and the number of two-dimensional faces is

s(m)
n,2 =

n!(n− 1)(m(n + 2) + 2)mn−2

4
. (6.9)

It is not too hard to derive the formula (6.8) directly from the definition of Shi faces, but
we do not know a direct proof of the formula (6.9).
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