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Resolving Stanley’s conjecture on k-fold acyclic
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Abstract. In 1993 Stanley showed that if a simplicial complex is acyclic over some
field, then its face poset can be decomposed into disjoint rank 1 boolean intervals
whose minimal faces together form a subcomplex. Stanley further conjectured that
complexes with a higher notion of acyclicity could be decomposed in a similar way
using boolean intervals of higher rank. We provide an explicit counterexample to this
conjecture. We also prove both a weaker version and a special case of the original
conjecture.
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1 Introduction

The interplay between combinatorial and topological properties of simplicial complexes
has been a subject of great interest for researchers for many decades (see, e.g., [1, 2, 3, 6,
9, 11, 13, 15, 16, 18, 19]). One particularly beautiful result due to Stanley [18, Theorem
1.2] connects the homology of the geometric realization of a complex to a well-behaved
decomposition of its face poset. In particular, if a simplicial complex ∆ is acyclic over
some field k, then its face poset can be written as the disjoint union of rank 1 boolean
intervals such that the minimal faces of these intervals together form a subcomplex of ∆.
Stanley [18, Proposition 2.1] and Duval [6, Theorem 1.1] generalized this result. Stanley
further conjectured [18, Conjecture 2.4] that complexes with a higher notion of acyclicity
possess similar decompositions into boolean intervals of higher rank.

Definition 1. A simplicial complex is k-fold acyclic if link∆ σ is acyclic (over a field k) for all
σ ∈ ∆ such that |σ| < k.

Conjecture 2 ([18, Conjecture 2.4]). Let ∆ be a k-fold acyclic simplicial complex. Then ∆ can
be decomposed into disjoint rank k boolean intervals, the minimal faces of which together form a
subcomplex.
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Our main result is an explicit counterexample to Conjecture 2. Our construction relies
on reducing to relative complexes and follows ideas similar to those recently developed
in [7] and [12].

Central to this problem is the f -polynomial f (∆, t) of a d-dimensional simplicial com-
plex, which we define as

f (∆, t) = ∑
σ∈∆

t|σ| = f−1 + f0t + f1t2 + · · ·+ fdtd+1

where fi = fi(∆) is the number of i-dimensional faces of ∆. Stanley’s result [18, Theo-
rem 1.2] shows that if ∆ is acyclic, then f (∆, t) = (1 + t) f (Γ, t) where Γ is a subcomplex.
Earlier, Kalai [13] showed this equality holds for some complex Γ, not necessarily a sub-
complex of ∆. Using results from Kalai’s algebraic shifting [14], Stanley [18, Proposition
2.3] further showed that the f -polynomial of a k-fold acyclic complex can be written as

f (∆, t) = (1 + t)k f (Γ, t)

for some complex Γ (which is not necessarily a subcomplex of ∆). If it had been true,
Conjecture 2 would have provided a combinatorial witness for this Γ. We prove a weaker
version the original conjecture in Theorem 9, which provides a witness Γ as a subcomplex
of ∆.

In Section 2, we review definitions and relevant background material. In Section 3,
we provide the construction of our counterexample. In Section 4, we prove a weaker
version of Conjecture 2, replacing boolean intervals with boolean trees. In Section 5, we
prove a special case of the original conjecture. We end with a section on open questions.

2 Preliminaries

We let [n] denote the set {1, . . . , n}. A simplicial complex ∆ on [n] is a subset of 2[n]

such that if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. The elements of ∆ are faces, and maximal
faces are facets. If F1, . . . , Fj are the facets of ∆, we will often write ∆ =

〈
F1, . . . , Fj

〉
, since

the facets uniquely determine ∆. The dimension of a face σ is dim σ = |σ| − 1 and the
dimension of ∆ is dim ∆ = max{dim σ | σ ∈ ∆}. A complex is pure if all facets have the
same dimension. For a pure complex, a ridge is a face of one dimension lower than the
facets. Unless otherwise specified, we assume throughout that dim ∆ = d.

A subcomplex of ∆ is a simplicial complex Γ such that Γ ⊆ ∆. If W ⊆ [n], then the
induced subcomplex on W is ∆|W := {σ ∈ ∆ | σ ⊆ W}. Given a face σ ∈ ∆, the link
and star of σ in ∆ are

link∆ σ = {τ ∈ ∆ | τ ∪ σ ∈ ∆, τ ∩ σ = ∅}
star∆ σ = {τ ∈ ∆ | τ ∪ σ ∈ ∆}
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which we will often denote as link σ and star σ if there is no possibility of confusion.
Given two complexes ∆1 and ∆2 on disjoint vertex sets, their join is ∆1 ? ∆2 = {σ1 ∪ σ2 |
σ1 ∈ ∆1, σ2 ∈ ∆2}. If ∆1 is a simplex on [k], then this join is the k-fold cone of ∆2. We
note that star σ = 〈σ〉 ? link σ.

Throughout we fix a base field k. The notation H̃i(X;k) denotes the ith reduced
homology group of the complex X with coefficients in k. Since we have fixed k, we drop
it from the notation and instead write H̃i(X). The (reduced) Betti numbers of a complex
∆ are β̃i = dimk H̃i(∆). A complex is acyclic (over k) if all of its reduced homology
groups are zero.

We note that 1-fold acyclicity is equivalent to acyclicity, so [18, Theorem 1.2] is the
k = 1 case of Conjecture 2. When k > 1, k-fold acyclicity is not topological; for example,
a triangle is 3-fold acyclic but its barycentric subdivision is 1-fold acyclic but not even
2-fold acyclic.

The construction of our counterexample relies on relative simplicial complexes;
given a simplicial complex ∆ and a subcomplex Γ, the relative complex Φ = (∆, Γ)
is the set of all of the faces of ∆ that are not faces of Γ.

Given a poset P and two elements x, y ∈ P, the interval from x to y is [x, y] = {z ∈
P | x ≤ z ≤ y}. If [x, y] = {x, y}, then we say that y covers x, which is denoted x l y. An
interval I is a rank k boolean interval if I ∼= 2[k]. A boolean interval decomposition of
P is a collection B of disjoint boolean intervals in P such that

P =
⊔
I∈B

I.

Such a decomposition is a rank k boolean interval decomposition if all intervals in the
decomposition are of rank k. We also refer to this as a rank k boolean decomposition.

Definition 3. A boolean tree of rank i is a subposet Ti of a poset P, that has a unique minimal
element r, and is defined recursively as follows. Any subposet with exactly one element is a
boolean tree of rank 0. Now assume T1 and T2 are two disjoint boolean trees of rank (i − 1),
each with minimal elements r1 and r2 respectively, such that r2 covers r1 in P. Then T1 ∪ T2 is a
boolean tree of rank i, with r1 as its unique minimal element.

The following are examples of boolean trees of ranks zero through three. Boolean
trees have the same size and ranks as a boolean interval, but relations between certain
elements may be missing.



4 Joseph Doolittle and Bennet Goeckner

A (rank k) boolean tree decomposition of a poset is defined the same as a (rank k)
boolean interval decomposition, except that boolean intervals are replaced with boolean
trees.

Definition 4. A simplicial complex ∆ is a stacked simplicial complex if ∆ is pure of dimension
d with a facet order F1, . . . , Fj such that for each i ∈ [j− 1], 〈F1, . . . , Fi〉 ∩ 〈Fi+1〉 is a (d− 1)-
simplex. Such an order is known as a stacked shelling.

3 Construction

To construct our counterexample, we require complexes to glue together, and a way to
glue them. First, we need a gluing lemma to maintain k-fold acyclicity. We use a variant
of [7, Theorem 3.1], which allows us to construct a counterexample to Conjecture 2 by
reducing the problem to finding a relative complex (∆, Γ) with appropriate properties.
Second, we must actually find such a pair (∆, Γ). We begin with the gluing lemma.

Lemma 5. Let ∆1 and ∆2 be simplicial complexes such that ∆1 is j-fold acyclic, ∆2 is k-fold
acyclic, and ∆1 ∩ ∆2 is `-fold acyclic. Then ∆1 ∪ ∆2 is m-fold acyclic, where m = min{j, k, `}.

This lemma follows from a Mayer-Vietoris sequence. It is used to preserve k-fold
acyclicity in the following theorem, which is a k-fold acyclic version of [7, Theorem 3.1].

Theorem 6. Let Φ = (∆, Γ) be a relative complex such that

1. ∆ and Γ are k-fold acyclic;

2. Γ is an induced subcomplex of ∆; and

3. Φ cannot be written as a disjoint union of rank k boolean intervals.

Let ` be the total number of faces of Γ and let N > `/2k. If Ω = ΩN is the complex formed by
gluing N copies of ∆ together along Γ, then Ω is a k-fold acyclic complex that cannot be written
as a disjoint union of rank k boolean intervals.

The proof follows from Lemma 5 and the pigeonhole principle.
We now start the construction of our counterexample, beginning with the following

relative complex Ψ, which is inspired by the complex in [7, Remark 3.6]. We have
shortened the notation so instead of writing {1, 2, 3, 4} we write 1234, for example.

Σ = 〈1234, 1235, 2345, 2456, 3456〉
Υ = 〈125, 124, 246, 346〉
Ψ = (Σ, Υ)
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Both Σ and Υ are 2-fold acyclic and the face poset of Ψ cannot be decomposed into
disjoint rank 2 boolean intervals. Since Υ is not an induced subcomplex of Σ, we cannot
immediately apply Theorem 6 to produce a counterexample to Conjecture 2. However,
this complex is the foundation of our counterexample and will be referred to repeatedly
in our construction. The face poset of Ψ is given below, for the reader to verify that it
cannot be decomposed into disjoint rank 2 boolean intervals.

1234 1235 2345 24563456

123134 234135 235 245345 256456356

13 5623 4535

Our goal is to create a new pair (∆, Γ) that does meet the conditions of Theorem 6.
We now consider the following complex, Γ. It is straightforward to check that Γ is 2-fold
acyclic. In particular, Γ is a simplicial 3-ball with no interior vertices.

Γ = 〈ABCE, BCEF, BCDF, ABCG, BCGH, BCDH, ABEG, BEFG, BFHG〉

Within Γ there are the following six pairs of triangles:

{ABC, BCD}, {ABE, BEF}, {ABG, BGH},
{CDF, CEF}, {CDH, CGH}, {EFG, FGH}. (3.1)

To each of the edges AB, CD, EF, GH in Γ we add a vertex, forming four triangles which
are not in Γ:

ABI, CDJ, EFK, GHL. (3.2)

For any two triangles from (3.2) there is a unique pair of triangles in (3.1) so that the
four triangles together form a complex isomorphic to Υ. For example, the two triangles
{ABI, CDJ} from (3.2) together with {ABC, BCD} form a complex isomorphic to Υ.
Given these four triangles, we glue a copy of Σ to Γ along this Υ in the natural way.

We obtain ∆ as the result of gluing six copies of Σ to Γ in this way, one for each choice
of two triangles from (3.2). For clarity, we list all the facets of ∆ that are not in Γ.

ABCJ, ABI J, BCI J, BCDI, CDI J,
ABEK, ABIK, BEIK, BEFI, EFIK,
ABGL, ABIL, BGIL, BGHI, GHIL,
CDFK, CDJK, CFJK, CEFJ, EFJK,
CDHL, CDJL, CHJL, CGHJ, GHJL,
EFGL, EFKL, FGKL, FGHK, GHKL.

(3.3)
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It is straightforward to verify that ∆ is 2-fold acyclic and that Γ is an induced subcomplex
of ∆. It only remains to be shown that (∆, Γ) is not decomposable into rank 2 boolean
intervals; this is done using a similar argument as in the proof of Theorem 6.

Theorem 7. Φ = (∆, Γ) is not rank 2 boolean decomposable.

Since f (Γ) = (1, 8, 22, 24, 9), Theorem 6 immediately implies that Ω17 is a counterex-
ample to Conjecture 2, since 17 > 64/4.

Remark 8. A linear program [5] verifies that Ω = Ω3 is a counterexample to Conjecture 2.
The f-polynomial of this counterexample is f (Ω3, t) = 1 + 20t + 136t2 + 216t3 + 99t4 = (1 +
t)2(1 + 18t + 99t2). This is the smallest known counterexample to Conjecture 2.

4 Boolean Trees

While Conjecture 2 is false, we will use this section to prove a weakened version of it
by replacing boolean intervals with boolean trees. We will rely on algebraic shifting,
developed by Kalai in [14], and iterated homology, developed by Duval and Rose in [9]
and Duval and Zhang in [10]. We refer the reader to these sources for more details.

Theorem 9. Let ∆ be k-fold acyclic. Then ∆ can be written as a disjoint union of boolean trees
of rank k. Furthermore, the minimal faces of these boolean trees together form a subcomplex ∆′.

The proof is similar to the proof of [10, Corollary 3.5]. It follows from [9, Theorem
4.1], [10, Theorem 3.2], and [14, Theorem 4.2].

The subcomplex ∆′ in Theorem 9 is a combinatorial witness to the subcomplex in [18,
Proposition 2.3]. This shows that the correct generalization of Stanley’s acyclic matching
is to boolean trees rather than boolean intervals.

We note the similarity between this case and the so-called Partitionability Conjecture
(see, e.g., [8], [17]). A complex ∆ is partitionable if its face poset can be written as the dis-
joint union of boolean intervals whose maximal faces are the facets of ∆. Though there
exist Cohen-Macaulay complexes which are not partitionable [7], all Cohen-Macaulay
complexes do have a similar decomposition if “boolean interval” is replaced in the defi-
nition of partitionable with “boolean tree” [10, Theorem 5.4].

5 d-fold Acyclic Complexes

In this section, we will show that Conjecture 2 holds for d-fold acyclic complexes where
d = dim ∆. We first show that Conjecture 2 holds for stacked complexes. We then show
that d-dimensional d-fold acyclic complexes must be stacked. Thus Conjecture 2 holds
when k = dim ∆.

Our interest in this case was sparked by the following result.
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Theorem 10 (Duval–Klivans–Martin, unpublished). If ∆ is 2-dimensional and 2-fold acyclic,
then ∆ is stacked.

Theorem 10 together with the following proposition shows that Conjecture 2 holds if
dim ∆ ≤ 2.

Proposition 11. Let ∆ be a d-dimensional stacked simplicial complex. Then ∆ is d-fold acyclic
and ∆ can be written as the disjoint union of rank d boolean intervals, the minimal elements of
which form a subcomplex ∆′ ⊆ ∆. In other words, Conjecture 2 holds for stacked complexes.

The proof of this proposition follows from a straightforward induction on dimension.
The following are two technical results needed in the proof of Theorem 14.

Lemma 12. Let ∆ be d-dimensional and d-fold acyclic. Then the f-polynomial of ∆ is f (∆, t) =
(1 + t)d(1 + nt) where n is the number of facets of ∆.

Lemma 13. Let ∆ be d-dimensional and d-fold acyclic. Then ∆ is pure and its facet-ridge graph
is connected.

Lemma 12 follows immediately from [18, Proposition 2.3], and Lemma 13 follows
from straightforward elementary arguments.

Theorem 14. If ∆ is d-dimensional and d-fold acyclic, then ∆ is stacked.

Using the above lemmas, Theorem 14 is proved by first producing a partitioning of
a given d-fold acyclic complex ∆ and then showing that this partitioning gives rise to a
stacked shelling.

Combining Theorem 14 and Proposition 11, we see that a d-dimensional complex ∆
is stacked if and only if it is d-fold acyclic. This leads immediately to our main result of
this section.

Corollary 15. Conjecture 2 holds when k = dim ∆.

6 Open Questions

While our construction gives a counterexample to Conjecture 2, our result in Theorem 9
provides an explicit witness to the structure of the f -polynomials of k-fold acyclic com-
plexes. Perhaps the most interesting questions in light of Remark 8 are in determining
any additional conditions that would make the conjecture hold. We know that Ω3 is the
lowest dimensional counterexample possible, but we have no reason to suspect that is in
other senses the smallest.

Question 1. What is a minimal counterexample to Conjecture 2 with respect to the total number
of faces, vertices, or facets, respectively?
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Though our counterexample is three-dimensional, it cannot be embedded into R3. It
is unknown if this non-embedding is necessary to be a counterexample.

Question 2. Is it possible to find a counterexample to Conjecture 2 that embeds into R3? In
general, is it possible to find a d-dimensional counterexample that embeds into Rd?

It is also unknown whether complexes with additional topological or combinatorial
structure could be counterexamples.

Question 3. Do all k-fold acyclic simplicial balls have a rank k boolean interval decomposition? If
they do, must there be a decomposition so that the bottoms of these intervals forms a subcomplex?

Although a bit further afield from the techniques developed in this paper, one can
ask about random simplicial complexes.

Question 4. For a fixed triple of k, d, v, there are finite k-fold acyclic complexes of dimension d
with v vertices. Sampling from this set with the uniform distribution, what is the probability the
chosen complex has a rank k boolean decomposition? What is the limiting probability as v goes
towards ∞?
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