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Divisors on matroids and their volumes
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Abstract. The classical volume polynomial in algebraic geometry measures the de-
grees of ample (and nef) divisors on a smooth projective variety. We introduce an
analogous volume polynomial for matroids, give a complete combinatorial formula,
and show that it is a valuation under matroid polytope subdivisions. For a realizable
matroid, we thus obtain an explicit formula for the classical volume polynomial of the
associated wonderful compactification; in particular, we obtain another formula for
volumes of generalized permutohedra. We then introduce a new invariant called the
shifted rank-volume of a matroid as a particular specialization of its volume polyno-
mial, and discuss its algebro-geometric and combinatorial properties in connection to
graded linear series on blow-ups of projective spaces.
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1 Introduction

Recent intersection theoretic approach to matroids has led to the resolution of the long-
standing conjecture of Rota on the log-concavity of the coefficients of chromatic poly-
nomials, first proven for graphs by Huh in [19], for realizable matroids in [20], and for
general matroids by Adiprasito, Huh, and Katz in [1]. Among the key tools in [19,
20] for establishing log-concavity is the Teissier-Khovanskii inequality for intersection
numbers of nef divisors on smooth projective varieties, which can be understood as a
phenomenon of convexity: The Newton-Okounkov body ∆(D) of a nef divisor D is
a convex body whose volume is the self-intersection number of D, and its existence re-
duces the Teissier-Khovanskii inequality to the Brunn-Minkowski inequality for volumes
of convex bodies.

For general matroids, a combinatorial version of Teissier-Khovanskii inequality is
proven in [1] by establishing Hodge theory analogues for the Chow ring of a matroid
without explicit use of convex bodies. Noting that matroids can be considered as trop-
ical linear varieties (see [4]), the results of [1] suggest an existence for an analogue of
Newton-Okounkov bodies for tropical linear varieties, and perhaps tropical varieties in
general. Our results here can be seen as a first step towards such a direction with various
ramifications to both algebraic geometry and combinatorics of matroids.
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The volume polynomial in classical algebraic geometry measures the self-intersection
number of a nef divisor on a smooth projective variety, or equivalently the volume of
its Newton-Okounkov body. In essence, it is defined by choosing a presentation of the
cohomology ring of the variety; here we define analogously the volume polynomial VPM
for a matroid M.

Let M be a matroid of rank r = d + 1 on a ground set E with lattice of flats LM, and
denote LM := LM \ {∅, E}. The Chow ring of a matroid defined below plays the role of
the cohomology ring of a smooth projective variety of dimension d.

Definition 1.1. The Chow ring of a simple matroid M is the graded ring

A•(M) :=
R[xF : F ∈ LM]

〈xFxF′ | F, F′ incomparable〉+ 〈∑F3i xF −∑G3j xG | i, j ∈ E〉

In analogy with Chow rings in algebraic geometry, we call elements of A1(M) divi-
sors on a matroid M. Like the cohomology rings of smooth manifolds, each graded piece
Ai(M) of the Chow ring A•(M) is a finite dimensional R-vector space and is nonzero
only for 0 ≤ i ≤ d. It satisfies Poincaré duality, with the degree map

degM : Ad(M)
∼→ R where degM(xF1 xF2 · · · xFd) = 1

for every maximal chain F1 ( · · · ( Fd in LM.

Given a graded algebra R with such Poincaré duality property, a standard procedure
of Macaulay’s inverse system in commutative algebra then provides a way to encode
R by a single polynomial called the cogenerator from which R can be recovered (see
Proposition 2.4).

Definition 3.1. Let M be a matroid of rank r = d+ 1. The volume polynomial VPM(t) ∈
R[tF : F ∈ LM] is the cogenerator of A•(M).

When M is realizable, VPM agrees with the classical volume polynomial of the won-
derful compactification YM of the complement of the associated hyperplane arrangement
AM of M. While VPM is initially defined purely algebraically, we prove a completely
combinatorial formula for VPM, which follows from our first main theorem on the inter-
section numbers of divisors on a matroid.

Theorem 3.2. Let M = (E,B) be a matroid, ∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = E a
chain of flats in LM of ranks ri := rk Fi, and d1, . . . , dk be positive integers such that
∑i di = d := rk M− 1. Denote by d̃i := ∑i

j=0 dj (where d0 := 0). Then

degM(xd1
F1
· · · xdk

Fk
) = (−1)d−k

k

∏
i=1

(
di − 1
d̃i − ri

)
µd̃i−ri(M|Fi+1/Fi)

where µi(N) denotes the i-th unsigned coefficient of the reduced characteristic polyno-
mial χN(t) = µ0(N)trk N−1 − µ1(N)trk N−2 + · · · ± µrk N−1(N) of a matroid N.
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Corollary 3.3. Let the notations be as above. The coefficient of td1
F1
· · · tdk

Fk
in VPM(t) is

(−1)d−k
(

d
d1, . . . , dk

) k

∏
i=1

(
di − 1
d̃i − ri

)
µd̃i−ri(M|Fi+1/Fi).

We give two immediate applications of the formula for the volume polynomial. The
first is an explicit formula in Proposition 4.1 for the volumes of generalized permutohe-
dra, adding to the ones given by Postnikov in [25]. The second is to show that taking the
Chow ring of a matroid respects the “type A" structure of matroids. More precisely,

Proposition 4.3. Consider VPM(t) as a polynomial in R[tS : S ∈ 2E]. Then the map
M 7→ VPM ∈ R[tS : S ∈ 2E] is a matroid valuation in the sense of [3].

While the volume polynomial VPM has the same information as the Chow ring A(M)
of a matroid, it lends itself more naturally as an invariant of a matroid than the Chow
ring. That M 7→ VPM is a valuation already illustrates this effect. Moreover, any natural
specialization of VPM defines an invariant of a matroid. We present here one such
example coming from the rank function of a matroid.

Definition 5.1. Define the shifted rank-volume of a matroid M to be

shRVol(M) := VPM(tF := rk F) = degM

(
∑

F∈LM

(rk F)xF

)rk M−1
.

The shifted rank-volume of a matroid seems to be a genuinely new invariant, as it
is unrelated to classical invariants such as the Tutte polynomial or the volume of the
matroid polytope; see Remark 5.3. It seems to measure how close the matroid is to the
uniform matroid.

Theorem 5.4. Let M be a realizable matroid of rank r on n elements. Then

shRVol(M) ≤ shRVol(Ur,n) = (n− r)r−1 with equality iff M = Ur,n.

The proof of Theorem 5.4 is algebro-geometric in nature, involving counting sections
of line bundles. In a subsequent work we give a proof for arbitrary matroids [5], but it is
not a combinatorial reflection of such algebro-geometric approach. This naturally leads
to asking whether there exist an analogue of the theory of Newton-Okounkov bodies for
linear tropical varieties.

This is an extended abstract for the author’s full paper [14]. Worked-out examples
and codes can be found at https://math.berkeley.edu/~ceur/research.html.

Notations. |S| denotes the cardinality of a (finite) set S. We use k for a field, which we
always assume algebraically closed, and a variety is an integral separated scheme over a
field k. A binomial coefficient (n

m) is understood to be zero if m < 0 or m > n.

https://math.berkeley.edu/~ceur/research.html
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2 Preliminaries

Wonderful compactifications and Chow rings of matroids

See [24] for a general reference on matroids. For accounts tailored towards Chow ring
of matroids, we recommend [6].

For a matroid M on a ground set E of rank r = d + 1, denote by LM the lattice of
flats, and LM := L \ {∅, E}1. An open interval in a lattice L is denoted (`1, `2) = {` ∈
L | `1 < ` < `2}. Let χM(t) be the characteristic polynomial of M, then its reduced
characteristic polynomial is χM(t) := χM(t)/(t− 1).

If the matroid M matroid is realizable, say as vectors {vi}i∈E spanning a k-vector
space V, denote by AM = {Hi}i∈E the associated hyperplane arrangement in P(V∗)
where Hi := { f ∈ P(V∗) : f (vi) = 0}. A flat F of rank c in M correspond to a c-
codimensional linear space HF := { f ∈ P(V∗) : f (vi) = 0 ∀i ∈ F}. The wonderful
compactification YM is then obtained by consecutively blowing-up (strict transforms of)
{HF}F∈LM

in P(V∗) starting with HF with highest rk F. YM is a compactification of
the hyperplane arrangement complement C(AM) = P(V∗) \ AM whose boundary YM \
C(AM) consists of the exceptional divisors H̃F, which have simple-normal-crossings.
See [11] for the original construction, or [16] for a survey written for combinatorialists.
The intersection theory of the boundary divisors of YM is encoded in the matroid ([1,
Theorem 5.12]), which leads to the definition of the Chow ring of an arbitrary matroid
(not necessarily realizable), first appearing in [15] and further studied in [1].

Definition 2.1. The Chow ring of a (simple) matroid M is the graded ring

A•(M) :=
R[xF : F ∈ LM]

〈xFxF′ | F, F′ incomparable〉+ 〈∑F3i xF −∑G3j xG | i, j ∈ E〉 .

We call elements of A1(M) divisors on M.

Recently in [1], the ring A•(M) has been shown to satisfy the whole Kähler package—
Poincaré duality, hard Lefschetz property, and Hodge-Riemann relations. For our pur-
poses, we only need the Poincaré duality.

Proposition 2.2. [1, §5.10] The Chow ring A•(M) of a matroid M of rank r = d + 1 is a
finite graded R-algebra satisfying: (i) there exists a linear isomorphism degM : Ad(M)→
R uniquely determined by the property that degM(xF1 xF2 · · · xFd) = 1 for every maximal

chain F1 ( · · · ( Fd in LM, and (ii) the pairings Ai(M)× Ad−i(M) → Ad(M)
deg
' R are

non-degenerate.
1As the notions we discuss will only depend on LM, we assume for simplicity that M is simple.
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Volumes of divisors and cogenerators

For a general reference on intersection theory, see [13]. Here we follow the survey [12].

Let X be a d-dimensional smooth projective variety over an algebraically closed field
k, and let A•(X) be its Chow ring and denote by degX or

∫
X the degree map Ad(X)→ Z

sending a class of a closed point to 1. For a Cartier divisor D on X, the volume of D is
defined as

vol(D) := lim
t→∞

h0(X, O(tD))

td/d!
.

In other words, denoting by R(D)• :=
⊕

t≥0 H0(X, tD) the section ring of D, the volume
measures the asymptotics of dimk R(D)t

td/d! as t→ ∞.
By standard relation between Hilbert polynomials and intersection multiplicities, vol-

ume of a very ample divisor D is the degree of X under the embedding given by D.
can be geometrically interpreted as follows: If m > 0 is such that mD is very am-
ple, then for general divisors E1, . . . , Ed in the complete linear system |mD| we have
vol(D) = 1

md degX[E1 ∩ E2 ∩ · · · ∩ Ed]. That is, vol(D) =
∫

X(c1(D))d if D is ample.
The volume of a divisor depends only on its numerical equivalence class. Thus, let-

ting N1(X) be the group divisors modulo numerical equivalence generated by {ξ1, . . . , ξr}
and Nef(X) ⊂ N1(X)R the nef cone, the map vol : Nef(X) → R defines the volume
polynomial VPX ∈ R[t1, . . . , tr] where

VPX(t1, . . . , tr) = vol(t1ξ1 + · · ·+ trξr) whenever t1ξ1 + · · ·+ trξr ∈ Nef(X).

Remark 2.3. The volume of a divisor D can be realized as a volume of convex body
∆(D) called the Newton-Okounkov body of D. For background on Newton-Okounkov
bodies, see [22] for a more geometric perspective with applications to big divisors and
Néron-Severi groups, and [21] for an approach using semigroups and with a view to-
wards generalized Kushnirenko-Bernstein theorem.

Macaulay’s inverse system provide a purely algebraic approach to the notion of vol-
ume polynomial as the cogenerator of a graded ring with Poincaré duality.

Proposition 2.4. [10, §13.4.7] Suppose a graded finite k-algebra A =
⊕d

i=0 Ai satisfies: (i)
A is generated in A1 with A0 = k, (ii) there exists a k-linear isomorphism deg : Ad → k,

and (iii) Ai × Ad−i → Ad
deg
' k is a non-degenerate pairing. Let x1, . . . , xn generate A1, so

that A ' k[x]/I for some ideal I. Then there exists P ∈ k[t1, . . . , tn] such that

I = { f ∈ k[x] | f (
∂

∂t1
, . . . ,

∂

∂tn
) · P = 0}.

Up to scaling by an element of k, this cogenerator P is

P = deg
(
(t1x1 + · · ·+ tnxn)

d)
where we extend deg : Ad → k to Ad[t1, . . . , tn]→ k[t1, . . . , tn].
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3 The volume polynomial of a matroid

As the Chow ring A•(M)R of a matroid satisfies Poincaré duality, that is, the conditions
of Proposition 2.4, we can define its cogenerator.

Definition 3.1. Let M be a matroid of rank r = d + 1. The volume polynomial VPM ∈
R[tF : F ∈ LM] is the cogenerator of A•(M)R, where VPM is normalized so that the
coefficient of any monomial tF1tF2 · · · tFd corresponding to a maximal chain of flats in
LM is d!.

Equivalently, observe that via Proposition 2.4 the volume polynomial is VPM =
degM((∑F∈LM

xFtF)
d) (where degM : Ad(M)→ R is extended to Ad[tF’s]→ R[tF’s]).

The coefficient of td1
F1
· · · tdk

Fk
for d1 + · · · dk = d = rk M− 1 in the volume polynomial

VPM is ( d
d1,...,dk

)degM(xd1
F1
· · · xdk

Fk
). Thus, the knowing the volume polynomial amounts

to knowing all the intersection numbers degM(xd1
F1
· · · xdk

Fk
). Our main theorem is the

combinatorial formula for all the intersection numbers.

Theorem 3.2. Let M = (E,B) be a matroid, ∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = E a
chain of flats in LM of ranks ri := rk Fi, and d1, . . . , dk be positive integers such that
∑i di = d := rk M− 1. Denote by d̃i := ∑i

j=0 dj (where d0 := 0). Then

deg(xd1
F1
· · · xdk

Fk
) = (−1)d−k

k

∏
i=1

(
di − 1
d̃i − ri

)
µd̃i−ri(M|Fi+1/Fi)

where µi(N) is the i-th unsigned coefficient of the reduced characteristic polynomial
χN(t) = µ0(N)trk N−1 − µ1(N)trk N−2 + · · ·+ (−1)rk(N)−1µrk N−1(N) of a matroid N.

Corollary 3.3. Let the notations be as above. The coefficient of td1
F1
· · · tdk

Fk
in VPM(t) is

(−1)d−k
(

d
d1, . . . , dk

) k

∏
i=1

(
di − 1
d̃i − ri

)
µd̃i−ri(M|Fi+1/Fi).

Remark 3.4 (M0,n). When M is realizable, VPM agrees with the classical volume poly-
nomial of the wonderful compactification YM. In particular, when M = M(Kn−1) is the
matroid of the complete graph on n − 1 vertices, its wonderful compactification YM is
the Deligne-Mumford space M0,n of rational curves with n marked points ([23, §6.4]).
The numerical cones of M0,n are believed to be complicated, as M0,n is not a Mori
dream space in general ([18]). Nevertheless, our combinatorial formula for the volume
polynomial allows for computation of the volume of any divisor in its nef cone.

Remark 3.5 (Computation). Computing VPM via Proposition 2.4 alone via Gröbner bases
quickly becomes infeasible as the matroid becomes larger. For example, M(K6) has 203
flats, so that the Chow ring A(M) has 201 variables.
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The proof of Theorem 3.2 consists broadly of three steps. First, via the geometry of
the Bergman fan of a matroid, one deduces the following key lemma.

Lemma 3.6. Let M = (E,B) be a matroid, F : ∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = E a
chain of flats in LM. Write xF for xF1 xF2 · · · xFk . Then for any 1 ≤ i ≤ k, we have

xF · xFi = xF · (−1)

 ∑
F∈(Fi,Fi+1)

|Fi+1 \ F|
|Fi+1 \ Fi|

xF + ∑
F∈(Fi−1,Fi)

|F \ Fi−1|
|Fi \ Fi−1|

xF


The second step involves using this to expand xd1

F1
· · · xdk

Fk
into square-free monomials.

In doing so, one comes across the following quantity.

Definition 3.7. For M a loopless matroid on a ground set E of rank d + 1 and −1 ≤
i ≤ d + 1, define γ(M, i) as follows. For i = −1, d + 1, define γ(M,−1) = −1 and
γ(M, d + 1) = 0; for 0 ≤ i ≤ d, define

γ(M, i) := ∑
G∈L ≤i

M

(−1)
(
−|G1 \ G0|
|G1|

)(
−|G2 \ G1|
|G2|

)
· · ·
(
−|Gi+1 \ Gi|
|Gi+1|

)

where L ≤i
M consists of chains of flats G : ∅ = G0 ( G1 ( · · · ( Gi ( Gi+1 = E such that

rk Gj = j for j = 0, . . . , i.

Lastly, one relates these quantities γ(M, i) to the characteristic polynomial via Weis-
ner’s theorem [26, §3.9] and the cover-partition axiom for flats of a matroid.

Proposition 3.8. χM(t) = ∑d
i=0 γ(M, i)td−i for a loopless matroid M of rank r = d + 1.

4 First applications of the volume polynomial

We give some first applications of the volume polynomial of a matroid. In this section,
we always set the ground set of a matroid to be [n] := {1, . . . , n} for some n.

Volumes of generalized permutohedra

A generalized permutohedron P is obtained by sliding the facets of the permutohedron.
More precisely, for a submodular function z(·) : 2[n] → R (where [n] ⊃ I 7→ zI) on the
boolean lattice LUn,n , we define

P(z) := {(x) ∈ Rn | ∑
i∈[n]

xi = z[n], ∑
i∈I

xi ≤ zI ∀I ⊂ [n]}

which is a polytope of dimension at most n− 1 in Rn. It is characterized by the property
that every edge is parallel to ei − ej for some i 6= j ∈ [n].
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The Bergman fan ΣAn−1 of Un,n is the normal fan of the permutohedron, whose rays
correspond to subsets of [n]. As nef torus invariant divisors on the toric variety XΣAn−1
exactly correspond to submodular functions with z∅ = z[n] = 0, combining Corollary 3.3
and well-known results from toric geometry on volumes of torus invariant divisors ([10,
§13.4.3]) gives us:

Proposition 4.1. Let z(·) : I 7→ zI ∈ R be a submodular function such that z∅ = z[n] = 0,
then the volume of the generalized permutohedron P(z) is

(n− 1)! Vol P(z) = ∑
I•,d

(−1)d−k
(

d
d1, . . . , dk

) k

∏
i=1

(
di − 1

d̃i − |Ii|

)(|Ii+1| − |Ii| − 1
d̃i − |Ii|

)
zIi

where the summation is over chains ∅ ( I1 ( · · · ( Ik ( Ik+1 = [n] and d = (d1, . . . , dk)

such that ∑ di = n− 1 and d̃j := ∑
j
i=1 di.

Postnikov computed the volumes of generalized permutohedra that can be expressed
as Minkowski sums of standard simplices ([25, Corollary 9.4]). Note that our formula
above imposes no such restriction. It was not clear to the author how one recovers
Proposition 4.1 from [25, Corollary 9.4] or vice versa.

Valuativeness of the volume polynomial

While the volume polynomial VPM has the same information as the Chow ring A(M),
it lends itself more naturally as a valuation on a matroid when viewed as a map M 7→
VPM ∈ R[tS : S ∈ 2[n]]. In this subsection, we illustrate this by showing that M 7→ VPM
is a valuation under matroid polytope subdivisions, which is a statement that does not
make sense for M 7→ A(M).

We first give a brief sketch of matroid polytopes and matroid valuations; for more on
matroid valuations, we point to [3]. Given a matroid M on [n] of rank r with bases B, its
matroid polytope is defined as

∆(M) := Conv(eB = ∑
i∈B

ei | B ∈ B) ⊂ Rn

where eS := ∑i∈S ei for S ⊂ [n] and ei’s are the standard basis of Rn. Its vertices are
the indicator vectors for the bases of M, and it follows from a theorem of Gelfand,
Goresky, MacPherson, and Serganova that the faces of ∆(M) are also matroid polytopes
([17]). A matroid subdivision S of a matroid polytope ∆ is a polyhedral subdivision
S : ∆ =

⊔
i ∆(Mi) such that each ∆(Mi) is a matroid polytope of some matroid Mi

(necessarily of rank r on with ground set [n]). Denote by Int(S) the faces of ∆(Mi)’s
that is not contained in the boundary of ∆(M). It is often of interest to see whether
a valuation on matroids behave well via inclusion-exclusion with respect to matroid
subdivisions:
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Definition 4.2. Let R be an abelian group, and letM :=
⋃

n≥0{matroids on ground set [n]}
be the set of all matroids. A map ϕ : M→ R is a matroid valuation (or is valuative) if
for any M ∈ M and a matroid subdivision S : ∆(M) =

⊔
i ∆(Mi) one has

ϕ(M) = ∑
Q∈Int(S)

(−1)dim ∆(M)−dim Q ϕ(Mi).

Many interesting functions on matroids are matroid valuations, for example the Tutte
polynomial ([3, Corollary 5.7]). The formula in Corollary 3.3, combined with Hopf al-
gebra structure for matroids (see [2]), allows one to prove that volume polynomial of a
matroid is also a matroid valuation.

Proposition 4.3. M 7→ VPM(t) ∈ R[tS : S ∈ 2[n]] is a matroid valuation.

That the matroid volume polynomial behaves well with respect to matroid polytope
subdivisions suggests that there may be a generalization of Chow ring of matroids to
Coxeter matroids of arbitrary Lie type (where matroids are the type A case). For Coxeter
matroids see [7].

5 The shifted rank-volume of a matroid

Let M = (E,B) be a matroid. Following [1], a (strictly) submodular function c(·) : 2E →
R gives a combinatorially nef (ample) divisor D = ∑F∈LM

cFxF ∈ A1(M)R. For realizable
matroids, if the divisor D ∈ A1(M)R is combinatorially nef (ample) then as an element
of A1(YM)R the divisor D is nef (ample) in the classical sense. As the rank function is a
distinguished submodular function of a matroid2, we define the following notions.

Definition 5.1. For a matroid M, define its shifted rank-divisor to be
DM := ∑F∈LM

(rk F)xF, and define the shifted rank-volume of a matroid M to be the
volume of its shifted rank-divisor:

shRVol(M) := deg
(

∑
F∈LM

(rk F)xF

)rk M−1
.

A slight modification of the proof of Proposition 4.3 implies that the shifted rank-
volume of a matroid is a valuative invariant.

Corollary 5.2. The map M 7→ shRVol(M) is a matroid valuation.

We do not know of a purely combinatorial meaning of the shifted rank-volume of a
matroid. In fact, it seems to be a genuinely new invariant of a matroid.

2Technically one should impose c∅ = cE = 0 for the submodular function c, which the rank function
does not satisfy (as most often rk(E) > 0). This turns out not to be an issue here, but is the reason for the
modifier “shifted" in the following definition.
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Remark 5.3 (Relation to other invariants, or lack thereof). We point to Eur_DivMatVol.m2
that can be found at https://math.berkeley.edu/~ceur/research.html for computa-
tions supporting the statements below.

• Same Tutte polynomial does not imply same shRVol, and vice versa. The two
graphs in Figure 2 of [9] have the same Tutte polynomial but their matroids are not
isomorphic; their shifted rank-volumes are 1533457 and 1534702. There are many
examples of matroids with same shRVol but with different Tutte polynomials.

• Same volume of the matroid polytope does not imply same shRVol, and vice versa.

The following theorem shows that the shifted rank-volume seems to measure how
close the matroid is to the uniform matroids.

Theorem 5.4. Let M be a realizable matroid of rank r on n elements. Then

shRVol(M) ≤ shRVol(Ur,n) = nr−1 with equality iff M = Ur,n.

Proof. As YM is constructed as consecutive blow-ups of Pr−1, let π : YM → Pr−1 be the
blow-down map and let H̃ = π∗(c1(OPr−1(1))) be the pullback of the hyperplane class.
Then the key observation is

DM = nH̃ − ∑
rk F>2

(|F| − rkM F)xF.

Noting that |F| − rkM F ≥ 0, we have that DM = D− E where D = nH̃ is a nef divisor
and E = ∑rk F>2(|F| − rkM F)xF is an effective divisor. Then the proof of the inequality
then reduces to an almost trivial statement in algebraic geometry that H0(m(D− E)) ⊂
H0(mD) for all m ≥ 0 (or equivalently that ∆(D− E) ⊂ ∆(D)).

For the remainder of the statement, note that
⊕

m≥0 H0(m(nH̃ − E)) is a graded lin-
ear series on Pr−1 of degree n hypersurfaces vanishing at certain loci dictated by E,
where E = 0 exactly when M = Ur,n. Thus, one concludes that shRVol(Ur,n) = (degree
of Veronese embedding by OPr−1(n)) = nr−1 and that among realizable matroids the
maximum nr−1 is achieved uniquely by Ur,n.

There is no analogue of counting sections H0(D) of a divisor D in the purely combi-
natorial setting of matroids or more generally in tropical geometry. As a result, the proof
of the inequality in Theorem 5.4 for arbitrary matroids given in a subsequent work [5]
is not a combinatorial reflection of the algebro-geometric proof for realizable matroids
given above, and the validity of the statement that the maximum is achieved uniquely
by the uniform matroid remains unclear. This thus further begs the question of whether
there is a notion of Newton-Okounkov bodies for matroids, a.k.a. tropical linear vari-
eties.

https://math.berkeley.edu/~ceur/research.html
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