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Abstract. The jeu-de-taquin-based Littlewood-Richardson rule of Thomas–Yong (2009)
for minuscule varieties has been extended in two orthogonal directions, either enrich-
ing the cohomology theory or else expanding the family of varieties considered. In
one direction, Buch–Samuel (2016) developed a combinatorial theory of ‘unique rec-
tification targets’ in minuscule posets to extend the Thomas-Yong rule from ordinary
cohomology to K-theory. Separately, Chaput–Perrin (2012) used the combinatorics of
Proctor’s ‘d-complete posets’ to extend the Thomas-Yong rule from minuscule vari-
eties to a broader class of Kac–Moody structure constants. We begin to address the
unification of these theories. Our main result is the existence of unique rectification
targets in a large class of d-complete posets. From this result, we obtain conjectural
positive combinatorial formulas for certain K-theoretic Schubert structure constants in
the Kac–Moody setting.

1 Introduction

The 1970s saw a major advance in enumerative geometry when Schützenberger proved
the Littlewood-Richardson rule for describing the cohomology rings of Grassmannians.
Since then, the modern Schubert calculus has turned to extending this understanding
in two different directions: on the one hand to replace the Grassmannian with a more
complicated homogeneous space, and on the other hand to replace ordinary cohomol-
ogy with a richer generalized cohomology theory. Along these lines, this abstract sum-
marizes our results from [7], beginning to unravel the K-theoretic Schubert calculus of
Kac–Moody homogeneous spaces. Our results are purely combinatorial, but allow us to
conjecture explicit Littlewood-Richardson-style rules in this geometric context.

Let G be a complex Kac–Moody group with Borel and opposite Borel subgroups
B+, B−. Let B+ ⊆ P ⊂ G be a parabolic subgroup. The homogeneous space X = G/P
is a Kac–Moody flag variety. The Zariski closures of the B−-orbits are the Schubert
varieties {Xw}w∈WP and give a cell decomposition of X; here, WP denotes the set of
minimal-length representatives of the quotient W/WP, where W is the Weyl group of
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G and WP is the parabolic Weyl group for P. The cohomology ring H?(G/P) thereby
has a distinguished Schubert basis {σw}w∈WP with σw Poincaré dual to Xw. Thus, to
multiply in H?(X), it suffices to determine the Schubert structure constants cw

u,v defined
by σu · σv = ∑w∈WP cw

u,vσw. If X = Grk(C
n) is a Grassmannian, this problem is solved in

a positive combinatorial manner by any of the various Littlewood-Richardson rules. For
a general Kac–Moody flag variety X, these cw

u,v are also non-negative integers, but it is
generally open to give an analogous Littlewood-Richardson-style rule for them.

For X = Grk(C
n), Schützenberger’s Littlewood-Richardson rule is stated in terms of

jeu de taquin for standard Young tableaux [16] fitting inside a k× (n− k) rectangle. One
may realize this rectangle as a subposet of positive roots for GLn(C) so that the inversion
set of w ∈ WP is an order ideal and may then realize standard Young tableaux as lin-
ear extensions of intervals in this poset. From this perspective, Thomas-Yong [19] gave
a uniform extension of Schützenberger’s rule to compute all cohomological Schubert
structure constants for the larger family of minuscule varieties. This was further extended
by Chaput-Perrin [4] to a positive combinatorial formula for certain Λ-minuscule Schu-
bert structure constants for general Kac–Moody X. In the Chaput-Perrin rule, the role of
the k× (n− k) rectangle is played by Proctor’s d-complete posets [11, 12]; these are exactly
those posets encoding the containment relations among Λ-minuscule Schubert varieties.

Much work in modern Schubert calculus studies homogeneous spaces through richer
cohomology theories. In these theories, there are Schubert bases analogous to the σw
and the corresponding Schubert structure constants enjoy various positivity properties.
Hence, it makes sense to attempt to develop positive combinatorial formulas for these
structure constants in the style of classical Littlewood-Richardson rules. For Grassman-
nians, one has, for example, the K-theory rule of Buch [1]. Our interest is in the K-theory
ring K(X) of the Kac–Moody flag variety X, where the K-theoretic Schubert classes
{[OXw ]}w∈WP are represented by the structure sheaves of the Schubert varieties. Specifi-
cally, we are interested in the structure constants Kw

u,v of K(X) defined by

[OXu ] · [OXv ] = ∑
w∈WP

Kw
u,v[OXw ]. (1.1)

For Grassmannians, various alternatives to Buch’s original rule [1] for Kw
u,v are now

known. However, only the rule of Thomas–Yong [20] is currently known to extend to
all of the minuscule varieties [2, 3, 5]. This rule is based on a jeu de taquin theory
for increasing tableaux. This combinatorial theory displays several extra subtleties when
compared to Schützenberger’s jeu de taquin for standard tableaux. In particular, a key
ingredient is the need to identify increasing tableaux with the unique rectification target
property. (These combinatorial notions are reviewed in Section 2.)

Both [3] and [20] ask to what extent their combinatorial theory extends to d-complete
posets. The missing ingredient is that it is unknown if general d-complete posets have
“enough” unique rectification targets. We conjecture that they do:
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Conjecture 1. Let P be a d-complete poset and let λ ⊆ P be an order ideal. Then there is an
(explicitly-defined) unique rectification target supported on λ.

We study the existence and structure of unique rectification targets in d-complete
posets. Every d-complete poset can be constructed by gluing together (in prescribed
ways) certain irreducible d-complete posets [11]. These irreducible pieces are classified
[11] and include all of the minuscule posets (the posets describing the Schubert stratifi-
cation of minuscule varieties). Informally, the following is our main result.

Theorem 2. Conjecture 1 holds in the case that P is built from minuscule posets.

Figure 1: The Hasse diagram of a representative d-complete poset P that is “built
from minuscule posets” in the sense of Theorem 2. In P , every order ideal λ ⊆ P has
a unique rectification target, provided by Theorem 2.

For an example of such a poset covered by Theorem 2, see Figure 1. The precise
formulation of Theorem 2 appears as Corollary 22. For any P satisfying Conjecture 1,
one obtains (as in [3, §3.5]) a corresponding combinatorially-defined associative commu-
tative unital algebra K(P) with a basis {λ} indexed by order ideals of P . The structure
constants tν

λ,µ of K(P) are defined in such a way as to transparently alternate in degree.
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(This construction is discussed in Section 4.) For w ∈ WP Λ-minuscule, the interval
[id, w] in Bruhat order is isomorphic to the poset of order ideals of a certain d-complete
poset Pw constructed from w. Building on Conjecture 1, we propose the following.

Conjecture 3. Let X = G/P be a Kac–Moody flag variety and let m ∈ WP be Λ-minuscule.
Then, for u, v, w ≤ m in Bruhat order, we have the equality of structure constants Kw

u,v = tν
λ,µ

between the rings K(X) and K(Pm), where the order ideals λ, µ, ν ⊆ Pm correspond respectively
to the Weyl group elements u, v, w ∈WP.

In Section 4, we give the precise versions of Conjecture 1 and Theorem 2, as well as
the details necessary for a precise understanding of Conjecture 3. In light of Conjecture 3,
Theorem 2 should be understood as giving a conjectural positive combinatorial rule for
certain K-theoretic Schubert structure constants of Kac–Moody flag varieties. Several
cases of Conjecture 3 are known to be true or have been previously conjectured. If the
flag variety X is minuscule, then Conjecture 3 reduces to the main theorem of [3]. If,
on the other hand, X is general but |ν| − |λ| − |µ| = 0, then Conjecture 3 reduces to
[4, Conjecture 1.1], many cases of which are proved in [4, Theorem 1.3]. Assuming one
followed the general structure utilized by [3, 4], the main ingredients one would need in
a proof of Conjecture 3 are

(1.) a proof of the remaining cases of Conjecture 1 and

(2.) ad hoc geometric verifications of Conjecture 3 for special u lying in a generating set
of classes.

For a large class of such Schubert problems, Theorem 2 provides the necessary first
ingredient, so it only remains to establish the second in those cases.

Another potential application of Theorem 2 (or more generally Conjecture 1) is to
establishing plane partition identities. In [6], the authors use the existence of unique
rectification targets in minuscule posets to give bijective proofs of the equinumerosity
of various classes of plane partitions, in particular resolving a 1983 question of Proctor
[10]. The main technology of [6] applies equally to any d-complete poset satisfying
Conjecture 1; hence, we expect Theorem 2 to yield analogous identities.

This abstract is organized as follows. In Section 2, we fix notation for posets, describe
the Thomas-Yong theory of jeu de taquin for increasing tableaux, and recall the definition
of unique rectification targets (URTs). Section 3 studies the behavior of URTs when two
posets are combined via Proctor’s slant sum operation, introduces the notion of a p-chain
URT, and establishes the necessary technical fact that all increasing tableaux of straight
shape in a double-tailed diamond poset are p-chain URTs. In Section 4, we first recall
background on d-complete posets and recall needed notions to make Conjectures 1 and 3
precise. We then apply the results from Section 3 to the study of d-complete posets and
prove Theorem 2, our main result.
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2 Posets, skew shapes, and rectifications

All posets in this paper will be finite, nonempty, and connected. Although there is now
a more general notion of infinite d-complete posets (see the “Added Notes” at the very
end of [15] for discussion), we will not explicitly consider such objects. In this section,
P will denote an otherwise arbitrary poset.

We often visualize posets using Hasse diagrams, where each element is represented
by a circle, and a l b if there is a line that goes up from a to b. We denote the minimum
element (if it exists) of the poset P by 0̂P . We say a poset P has a 0̂P to mean that it has
a minimum, which is 0̂P . We say that a poset P is a chain if all pairs of elements of P
are comparable, that is, if P is a total order. The size of a chain P is the number of its
elements. A shape ν of P is any subset of P . The shape ν has a natural poset structure
given by restricting that of P . A shape ν of P is called an order ideal of P if it is closed
downwards, i.e. if y ∈ ν and x < y together imply x ∈ ν. Similarly, an order filter of P
is a subset that is closed upwards. For historical reasons, we will also refer to the order
ideals of P as straight shapes. If λ ⊆ ν are straight shapes of P , then the shape ν \ λ

is called a skew shape of P and is denoted ν/λ. Note that every straight shape λ can
also be realized as the skew shape λ/∅. An element x ∈ λ is called an inner corner of
the skew shape ν/λ if x is maximal in λ. We write IC(ν/λ) to denote the set of inner
corners of ν/λ. For a skew shape ν/λ of P , a function T : ν/λ → Z>0 is called a skew
increasing P-tableau of shape ν/λ if T is a strictly order preserving map, i.e. if x < y
implies T(x) < T(y). If, in addition, T is a bijection onto an initial segment of Z>0, we
say T is a skew standard P-tableau. In both cases, if ν/λ is a straight shape, we drop
the word “skew.” We depict a skew increasing P-tableau T using Hasse diagrams with
labels. For an element x ∈ P , we put the value of T(x) in the circle of the Hasse diagram
corresponding to x. Also, to make clear what the ambient poset is we represent skewed
out elements (the elements in λ) with unlabeled hollow circles. For a skew shape ν/λ

of P , we say a function T : ν/λ → Z>0 ∪ {•} is a skew dotted increasing P-tableau of
shape ν/λ if there is a rational number q such that T becomes a strictly order preserving
map (ν/λ→ Q) when we replace each • with that fixed q.

Definition 4. Let T be a skew increasing P-tableau of shape ν/λ. If γ is a nonempty
set of inner (or outer) corners of ν/λ, then AddDotsγ(T) is the skew dotted increasing
P-tableau S of shape ν/λ ∪ γ defined by

S(x) =

{
T(x), if x ∈ ν/λ;
•, if x ∈ γ.

Definition 5. Let T be a skew dotted increasing P-tableau. For n ∈ Z>0, Swap•,n(T) is
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the skew dotted increasing P-tableau S defined by

S(x) =


n, if T(x) = • and T(y) = n for some y l x;
•, if T(x) = n and T(y) = • for some y m x;
T(x), otherwise.

Definition 6. Let T be a skew dotted increasing P-tableau. Let Q be the subset of P
which T maps to an integer: Q = {x : T(x) ∈ Z>0}. We define RemoveDots(T) = T|Q.

Definition 7. Let T be a skew increasing P-tableau of shape ν/λ and let γ ⊆ IC(ν/λ).
Let n = max(Range(T)). The slide of γ in T is the skew increasing P-tableau Slideγ(T) =
RemoveDots ◦ Swap•,n ◦ · · · ◦ Swap•,1 ◦AddDotsγ(T). We also use Slideγ1,...,γn to denote iter-
ated slides: Slideγ1,...,γn(T) = Slideγn ◦ · · · ◦ Slideγ1(T).

For a tableau T of shape ν/λ, we use the notation IC(T) to mean IC(ν/λ).

Definition 8. Let T be a skew increasing P-tableau. We define its rectification step sets,
Si, recursively. First, S0 = {T}. Next, Sn+1 = {Slideγ(S) : S ∈ Sn and ∅ 6= γ ⊆ IC(S)}.
The rectifications of T are the elements of the rectification set rects(T) = {U : U ∈
Sn for some n ∈ Z≥0 and U is of straight shape}. To denote that U is a rectification of T
given by sliding the sequence of sets of inner corners (γ1, . . . , γn), we write T

γ1,...,γn−−−−→ U.

We say a skew increasing P-tableau rectifies uniquely if it has exactly one rectifica-
tion. We say an increasing P-tableau T of straight shape is a unique rectification target
(URT) if every skew increasing P-tableau which rectifies to T rectifies uniquely.

3 Unique rectification in slant sums and double-tailed di-
amonds

We first explore the structure of URTs in posets that are built out of smaller posets.

Definition 9 ([11]). Let P ,Q be disjoint posets. Assume Q has a minimum element 0̂Q.
Let p ∈ P . The slant sum of Q to P at p, denoted P p/0̂Q Q is the poset on P t Q
induced by imposing 0̂Q m p together with the orders on P and Q. Because a poset’s
minimum is unique, we will usually drop the 0̂Q and denote the slant sum as P p/Q. If
Q1, . . . ,Qn are pairwise disjoint posets which each have minima, then P p/ (Q1, . . . ,Qn)
denotes the iterated slant sum of posets at p. Finally, given p1, . . . , pm ∈ P and pairwise
disjoint posets Qj

i with minima, we write P p1/ (Q1
1, . . . ,Q1

r1
) p2/ · · · pm / (Qm

1 , . . . ,Qm
rm)

to denote the result of slant summing each Qj
i onto pj (in any order).
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Definition 10. Let P be a poset, let Q be a subset of P , and let T be a skew increasing
P-tableau. Then, the rectifications of T restricted to Q are the elements of the set
rects|Q(T) := {U|Q : U ∈ rects(T)}.

Definition 11. Let P be a poset and fix p ∈ P . Let U be a URT in P . Then U is a p-chain
unique rectification target in P if U is a URT in P p/ C for every chain poset C. More
generally, U is a {p1, . . . , pn}-chain URT in P if U is a URT in P p1/ C1 p2/ · · · pn / Cn for
all pairwise disjoint chains C1, . . . , Cn.

We note that being a p-chain URT is a strictly stronger notion than being a URT.

Proposition 12. LetR be the slant sumR := P p1/ (Q1
1, . . . ,Q1

m1
) p2/ · · · pn / (Qn

1 , . . . ,Qn
mn),

for pi distinct and Qj
i all pairwise disjoint with minimum elements. Let T be a skew increasingR-

tableau with rectifications U and V. If U|P is a {p1, .., pn}-chain URT in P , then U|P = V|P .

Proposition 13. Let P be a poset. Let R := P p1/ (Q1
1, . . . ,Q1

m1
) p2/ · · · pn / (Qn

1 , . . . ,Qn
mn)

for pi ∈ P distinct and Qj
i all pairwise disjoint with minimum elements.

Let U be an increasing R-tableau of straight shape. Suppose {p1, . . . , pn} ⊆ A ⊆ P and
Bj

i ⊆ Q
j
i . Set D := A ∪

(⋃
i,j Bj

i

)
. If U|P is an A-chain URT in P and U|Qj

i
is a Bj

i -chain URT

in Qj
i for each i, j, then U is a D-chain URT in R.

We now investigate the p-chain unique rectification targets of double-tailed dia-
monds. This special family of d-complete posets plays a central role in the study of
general d-complete posets. We will apply Proposition 14 to the general case in Section 4.

For k ≥ 3, a double-tailed diamond D(k) has 2k − 2 elements, two of which are
incomparable elements in the middle with chains of size k− 2 above and below them. It
is easy to work out that any increasing tableau on any order ideal of a double-tailed dia-
mond is a URT. (This is explicitly observed in [3, Proof of Theorem 3.12].) For application
in Section 4, we strengthen this observation to the setting of p-chain URTs.

Proposition 14. Every increasing D(n)-tableau of straight shape is an {`1, r1}-chain URT.

4 d-complete posets and minuscule posets

In this section, we recall the context of the d-complete posets of [12], and prove our main
result Theorem 2 regarding slant sum trees of minuscule posets. (Note that the paper
[11] uses a dual convention, so the posets in [11] are the duals of ours.) We also develop
appropriate terminology here to give precise interpretations of Conjectures 1 and 3.

Briefly, the algebraic context of d-complete posets is as follows. (For further details,
see [4, 12, 17].) Let Λ be a dominant integral weight of a Kac–Moody Lie algebra g

with (generally infinite) Weyl group W. We call w ∈W Λ-minuscule if it can be written
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as a reduced word in the simple reflections w = si1si2 · · · si` , so that for all j, we have
(sij+1 · · · si` − sij · · · si`)Λ = αij , where αij is the simple root for sij . (In fact, this property
is independent of the choice of reduced word [18, Proposition 2.1].) Now, if w is Λ-
minuscule, then the interval [id, w] in Bruhat order is a distributive lattice. A poset P
is d-complete if and only if it is isomorphic to the poset of join irreducibles of such
a ‘Λ-minuscule distributive lattice’; equivalently, a poset Q is isomorphic to a Bruhat
interval [id, w] for some Λ-minuscule w if and only if Q is isomorphic to the poset of
order ideals of a d-complete poset. Since Bruhat order on W also describes containment
of Schubert varieties in the Kac–Moody homogeneous space X = G/B, we have for
u, v ≤ w all Λ-minuscule that the inclusion of Schubert varieties Xu ⊆ Xv is equivalent
to the reverse inclusion λv ⊆ λu of the corresponding order ideals in the d-complete
poset for w. In addition to their algebraic relations, d-complete posets enjoy a number
of beautiful combinatorial properties, including an analogue of the classical hook-length
formula (see, e.g., [8, 9, 13, 14, 15]); for a bibliography of work on d-complete posets, see
[15, §12]. Figure 1 shows an example of a d-complete poset.

Say a d-complete poset is irreducible if it is not the slant sum of two d-complete
posets. Proctor [11] showed that all d-complete posets can be uniquely decomposed as
a slant sum of irreducible d-complete components. In this decomposition, irreducible
components are only slant summed onto special nodes of other irreducible components,
called acyclic nodes [11]; that is, if P = Q q/R is d-complete and R is irreducible, then
q is an acyclic node of its irreducible component. (It is sufficient for our purposes to
use Proctor’s explicit identification [11] of all acyclic nodes of all irreducible d-complete
posets.) The irreducible d-complete posets are classified into 15 (mostly infinite) families
by Proctor and Stembridge [11, 18]; we follow Proctor’s numbering and naming con-
ventions for these families from [11]. Of these 15 families, only the components from
families 1–9 and 11 have acyclic nodes.

For a poset P , we say an increasing P-tableau T of straight shape λ ⊆ P is minimally-
labeled if it is minimal among all increasing P-tableaux of shape λ under nodewise com-
parison of labels; that is, if U is another increasing tableau of shape λ, then U(x) ≥ T(x)
for all x ∈ λ. It is easy to see that there exists a unique minimally-labeled P-tableau
of each straight shape λ. We write Mλ for this unique tableau. The precise version of
Conjecture 1 is the following.

Conjecture 15. Let P be d-complete and let λ ⊆ P be an order ideal. Then, the minimally-
labeled increasing P-tableau Mλ of shape λ is a unique rectification target.

In light of the slant sum structure of d-complete posets, Conjecture 15 would follow
from Proposition 13 together with information about (p-chain) URTs in the 15 families
of irreducible d-complete posets. Specifically, it remains to show that

• for each irreducible d-complete poset Q with acyclic nodes, that Mλ is a p-chain
URT for each order ideal λ ⊆ Q and each acyclic node p ∈ Q, and that
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• for each irreducible d-complete poset Q without acyclic nodes, that Mλ is a URT
for each order ideal λ ⊆ Q.

Unfortunately, we are unable to establish the necessary results for some of these families;
hence, we can only leverage Proposition 13 to prove a weaker version of Conjecture 15,
namely Theorem 2. First, we recall the minuscule posets, a special subset of d-complete
posets. Except for some trivial instances, all minuscule posets are irreducible.

Algebraically, one obtains the minuscule posets as follows. Suppose the Kac–Moody
group G is in fact complex reductive. Put a partial order on the positive roots Φ+ of G
by taking the transitive closure of the covering relation α l β if and only if β − α is a
simple root. The simple root δ is a minuscule root if for every positive root α ∈ Φ+, the
multiplicity of δ∨ in the simple coroot expansion of α∨ is at most 1. For each minuscule
root, one obtains a corresponding minuscule poset Pδ by restricting the partial order on
(Φ+)∨ to those positive coroots that use δ∨ in their simple coroot expansion. There is
also a corresponding minuscule variety obtained as the quotient G/Pδ, where Pδ is the
maximal parabolic subgroup associated to the minuscule root δ. The minuscule poset
Pδ encodes the Schubert stratification of G/Pδ; specifically, the Schubert varieties are
naturally indexed by the order ideals of Pδ, and inclusions of order ideals correspond to
reverse inclusions of Schubert varieties.

Combinatorially, the minuscule posets are completely classified. Minuscule posets
consist of three infinite families together with a pair of exceptional examples. This clas-
sification is given in Table 1, with examples shown in Figure 2. One infinite family of
minuscule posets is the rectangles; combinatorially, these are the products Ci ×Cj of two
chain posets. Another infinite family is the double-tailed diamonds studied earlier. The
final infinite family is the shifted staircases; identifying the chain Ci with the natural
order on {1, . . . , i}, shifted staircases are of the form {(x1, x2) ∈ Ci × Ci : x1 ≥ x2}, with
the order structure restricted from Ci × Ci. For convenience, we will assume that shifted
staircases have at least 10 nodes, as the smaller shifted staircases coincide with small
rectangles/double-tailed diamonds. Lastly, for the definitions of the exceptional Cayley-
Moufang swivel and bat, see their Hasse diagrams depicted in the Figure 2. The acyclic
nodes of the minuscule posets are also shown in Figure 2; we will use the indexing of
these nodes as L and R, as in that figure.

Here, we will only use the following lemma in the case k = 1 of rectangles; however,
we note that it is equally true for four of Proctor’s other families, as listed.

Lemma 16. Let k ∈ {1, 3, 5, 6, 7}. Let P be an irreducible d-complete poset from family k and
let A ⊆ P be the set of all acyclic nodes in P . If a straight-shaped increasing P-tableau U is a
URT for all posets in family k, then U is a A-chain URT in all such posets.

Theorem 17 ([3]). Let P be a minuscule poset. Then, for every order ideal λ ⊆ P , the
minimally-labeled increasing P-tableau Mλ of shape λ is a URT in P .
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Figure 2: Examples of the 5 families of minuscule posets. The labeled red nodes mark
the acyclic nodes of these posets. The last two posets have no acyclic nodes.

Minuscule poset Minuscule variety Irreducible d-complete classification

rectangle Grassmannian shapes (family 1)
shifted staircase orthogonal Grassmannian shifted shapes (family 2)
double-tailed diamond quadric hypersurface insets (family 4–special case)
Cayley-Moufang swivel octonion projective plane swivels (family 8–special case)
bat Freudenthal variety bat (family 15)

Table 1: The 5 families of minuscule posets are named in the first column. The second
column identifies the corresponding minuscule homogeneous space. The third column
shows how the minuscule posets fall into R. Proctor’s classification of irreducible d-
complete posets from [11].

Corollary 18. Let P be a rectangle. Let Mλ be an minimally-labeled P-tableau of straight shape.
Then, Mλ is an {L, R}-chain URT in P .

Corollary 19. Let P be a shifted staircase with at least 10 nodes. If Mλ is a minimally-labeled
P-tableau of straight shape, then Mλ is an {R}-chain URT in P .

In order to state the following, we adopt the convention that an ∅-chain URT in P is
just a URT in P .

Proposition 20. Let P be a minuscule poset. Let A be the set of acyclic nodes in P . Let Mλ be
a minimally-labeled increasing P-tableau of straight shape. Then, Mλ is an A-chain URT in P .

Proposition 13 allows us to extend Proposition 20 to show that minimally-labeled
tableaux are unique rectification targets in iterated slant sums of minuscule posets.
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Theorem 21. Let P be a d-complete poset. If P is an iterated slant sum of minuscule posets, then
all minimally-labeled increasing P-tableaux of straight shape are unique rectification targets.

The following is the precise version of Theorem 2.

Corollary 22. Let P be a d-complete poset. If P is an iterated slant sum of minuscule posets
and Q ⊆ P is an order ideal, then all minimally-labeled increasing Q-tableaux of straight shape
are unique rectification targets.

Finally, we recall the construction necessary to make precise sense of Conjecture 3.
Let P be any poset satisfying the conclusion of Conjecture 15. Then, as in [3, §3.5],
we construct a combinatorial K-theory ring associated to P . Let K(P) be the free abelian
group on the set of order ideals of P . Define a product structure on K(P) by setting
λ · µ := ∑ν tν

λ,µ ν, where the Greek letters denote order ideals of P and tν
λ,µ is defined

to be (−1)|ν|−|λ|−|µ| times the number of skew increasing P-tableaux of shape ν/λ that
rectify to the minimally-labeled tableau Mµ. (Since Mµ is by hypothesis a URT in P , this
number is well-defined.) By [3, Proposition 3.17], this product structure makes K(P) into
a commutative associative algebra with the empty order ideal as multiplicative identity.
Conjecture 3 claims then that, when P is d-complete, the structure constants of the
algebra K(P) coincide with corresponding Λ-minuscule Schubert structure constants of
the K-theory ring K(X), where X = G/P is a Kac–Moody homogeneous space, w ∈ WP

is a Λ-minuscule Weyl group element for P, and P is the poset of join irreducibles of the
distributive lattice [id, w].
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