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Triangulations of the product of spheres with few
vertices
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Abstract. A small triangulation of sphere products can be found in lower dimensional
cases by computer search and is known in few other cases: Klee and Novik constructed
a balanced triangulation of S1 × Sd−2 with 3d vertices and a centrally symmetric tri-
angulation of Si × Sd−i−1 with 2d + 2 vertices for all d ≥ 3 and 1 ≤ i ≤ d − 2. In
this paper, we provide an alternative centrally symmetric (2d + 2)-vertex triangulation
of Si × Sd−i−1. We also construct the first balanced triangulation of S2 × Sd−3 with 4d
vertices, using a sphere decomposition inspired by handle theory.
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1 Introduction

Minimal triangulations of manifolds are an important research object in combinatorial
and computational topology. What is the minimal number of vertices required to trian-
gulate a given manifold? How do we construct a vertex-minimal triangulation and is
this triangulation unique?

In this paper, we focus on the triangulation of sphere products. From a result of [2], it
is known that a combinatorial triangulation of Si× Sd−i−1 has at least 2d− i + 2 vertices.
In 1986, [7] constructed a triangulation of S1× Sd−2 with 2d + 1 vertices for odd d. Later,
two groups of researchers, [1] as well as [3], found in 2008 that Kühnel’s construction
is indeed the unique minimal triangulation for odd d. For even d, they showed that the
minimal triangulation requires 2d + 2 vertices and is not unique.

The minimal triangulations of other sphere products are less well-understood. The
best general result is from [4], where a centrally symmetric triangulation of Si× Sd−i−1

with 2d + 2 vertices is constructed as a subcomplex of the boundary of the (d + 1)-
cross-polytope. In general, a result of [2] states that a triangulation of Si× Sj requires
at least i + 2j + 4 vertices for i ≥ j. In addition, the minimal triangulation of S2× Sd−3

for d ≤ 6 as well as the minimal triangulation of S3× S3 are found by the computer
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program BISTELLAR [8], which has shown that this lower bound is not always tight, as
a triangulation of S2× S2 requires at least 11 vertices. In this paper, we give an alter-
native centrally symmetric (2d + 2)-vertex triangulation of S2× Sd−3 for all d ≥ 5. The
construction is based on finding two shellable balls in the d-sphere whose intersection
triangulates S1×Dd−2, where Dd−2 is the (d− 2)-dimensional disk. By an inductive ar-
gument, we also obtain the triangulation of other sphere products in higher dimensions,
see Section 3.2.

In recent years, balanced triangulated manifolds have caught much attention. A
(d− 1)-dimensional simplicial complex is balanced provided that its graph is d-colorable.
Many important classes of complexes arise as balanced complexes, such as barycentric
subdivisions of regular CW complexes and Coxeter complexes. As taking barycentric
subdivisions of a complex would generate a lot of new vertices, one would ask if there
is a more efficient way to construct the balanced triangulated manifold from a non-
balanced one.

In much of the same spirit as Kühnel’s construction, [5] provided a balanced tri-
angulation of S1× Sd−2 with 3d vertices for odd d and with 3d + 2 vertices otherwise.
Furthermore, [10] showed that the number of vertices for the minimal triangulation is
indeed 3d for odd d and 3d+ 2 otherwise. However, as of yet, no small balanced triangu-
lations of Si× Sd−i−1 for 2 ≤ i ≤ d− 3 exist in literature. In this paper, we construct the
first balanced triangulation of S2× Sd−3 with 4d vertices. The construction uses a sphere
decomposition inspired by handle theory.

The extended abstract is structured as follows. In Section 2, we review the basics
of simplicial complexes, balanced triangulations, and other relevant definitions. In Sec-
tion 3, we present our centrally symmetric (2d + 2)-vertex triangulation of S2× Sd−3 and
construct other sphere products inductively. In Section 4, the balanced triangulation of
S2× Sd−3 with 4d vertices is constructed, followed by a discussion of its properties.

2 Preliminaries

A simplicial complex ∆ with vertex set V is a collection of subsets σ ⊆ V, called faces,
that is closed under inclusion, such that for every v ∈ V, {v} ∈ ∆. For σ ∈ ∆, let
dim σ := |σ| − 1 and define the dimension of ∆, dim ∆, as the maximum dimension of the
faces of ∆. A face σ ∈ ∆ is said to be a facet provided that it is a face which is maximal
with respect to inclusion. We say that a simplicial complex ∆ is pure if all of its facets
have the same dimension. If ∆ is (d − 1)-dimensional and −1 ≤ i ≤ d − 1, then the
f -number fi = fi(∆) denotes the number of i-dimensional faces of ∆. The star and link of
a face σ in ∆ is defined as follows:

st(σ, ∆) := {τ ∈ ∆ : σ ∪ τ ∈ ∆}, lk(σ, ∆) := {τ ∈ st∆ σ : τ ∩ σ = ∅}.
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When the context is clear, we may simply denote the star and link of σ as st(σ) and lk(σ)
respectively. We also define the restriction of ∆ to a vertex set W as ∆[W] := {σ ∈ ∆ :
σ ⊆ W}. A subcomplex Ω ⊂ ∆ is said to be induced provided that for all faces F ∈ ∆, if
every vertex v ∈ F is a vertex of Ω, then F is a face in Ω. The i-skeleton of a simplicial
complex ∆ is the subcomplex containing all faces of ∆ which have dimension at most i.
In particular, the 1-skeleton of ∆ is the graph of ∆.

Denote by σd the d-simplex. A combinatorial (d− 1)-sphere (respectively, a combinatorial
(d − 1)-ball) is a simplicial complex PL homeomorphic to ∂σd (respectively, σd−1). A
closed combinatorial (d− 1)-manifold is a connected simplicial complex with the property
that the link of each vertex is a combinatorial (d − 2)-sphere. A simplicial complex ∆
is a simplicial manifold, if the geometric realization of ∆ is homeomorphic to a manifold.
The boundary complex of a simplicial d-ball is a simplicial (d− 1)-sphere. In general, a
simplicial manifold need not be combinatorial.

A (d− 1)-dimensional simplicial complex ∆ is called balanced if the graph of ∆ is d-
colorable; that is, there exists a coloring map κ : V → {1, 2, · · · , d} such that κ(x) 6= κ(y)
for all edges {x, y} ∈ ∆. A simplicial complex is centrally symmetric or cs if it is endowed
with a free involution α : V(∆) → V(∆) that induces a free involution on the set of all
non-empty faces.

Let ∂C∗d be the boundary complex of the d-cross-polytope. It is cs, and furthermore,
it is a balanced vertex-minimal triangulation of the (d− 1)-sphere. Label the vertex set
of ∂C∗d as {x1, . . . , xd, y1, . . . , yd} such that xi, yi form a pair of antipodal vertices for all i.
Every facet of ∂C∗d can be written in the form u1u2 . . . ud, where each ui ∈ {xi, yi}. We say
a facet has a switch at position i if ui and ui+1 have different labels. Let B(i, d) be the pure
subcomplex of ∂C∗d that contains all facets with at most i switches. For example, B(0, d)
consists of the two disjoint facets {x1, . . . , xd} and {y1, . . . , yd}. If Γ is a subcomplex of
∂C∗d , we let the complement of Γ in ∂C∗d be the complex generated by those facets that are
not in Γ. Denote by Dd the dihedral group of order 2d.

The following lemma is essentially Theorem 1.2 in [4].

Lemma 2.1. For 0 ≤ i < d− 1, the complex B(i, d) satisfies the following properties:

1. B(i, d) contains the entire i-skeleton of ∂C∗d as a subcomplex.

2. The boundary of B(i, d) is homeomorphic to Si× Sd−i−2.

3. B(i, d) is a balanced centrally symmetric combinatorial manifold whose integral
(co)homology groups coincide with those of Si. Also, B(0, d) ∼= Dd−1 × S0 and
B(1, d) ∼= Dd−2 × S1.

4. The complement of B(i, d) in ∂C∗d is simplicially isomorphic to B(d− i− 2, d).

5. B(i,d) admits a vertex-transitive action of Z2 ×Dd if i is even and of D2d if i is odd.
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Finally, we define shellability.

Definition 2.2. Let ∆ be a pure d-dimensional simplicial complex. A shelling of ∆ is
a linear ordering of the facets F1, F2, . . . , Fs such that Fk ∩ (∪k−1

i=1 Fi) is a pure (d − 1)-
dimensional complex for all 2 ≤ k ≤ s, and ∆ is called shellable if it has a shelling.

3 The cs triangulations of the sphere products

It is known that for i ≤ j, the minimal triangulation of Si× Sj requires at least i + 2j + 4
vertices, see [2]. Such triangulations are constructed by [8] in lower dimensional cases
but not known in general. We aim at finding an alternative triangulation of S2× Sd−3

with 2d + 2 vertices for d ≥ 5. The following theorem is Theorem 7 in [6].

Theorem 3.1. Let M be a simply connected codimension-1 submanifold of Sd, where d ≥ 5. If
M has the homology of Si× Sd−i−1 and 1 < i ≤ d−1

2 , then M is homeomorphic to Si× Sd−i−1.

Proposition 3.2. Fix d and i ≤ d−1
2 . Let D1 and D2 be two combinatorial d-balls such that

1. ∂(D1 ∪ D2) is (d− 1)-dimensional submanifold of a combinatorial d-sphere.

2. D1 ∩ D2 = ∂D1 ∩ ∂D2 is a path-connected combinatorial (d− 1)-manifold (with bound-
ary) that has the same homology as Si−1.

3. ∂(D1 ∩ D2) has the same homology as Si−1× Sd−i−1.

Then ∂(D1 ∪ D2) triangulates Si× Sd−i−1 for d ≥ 5.

Proof: First note that D1 ∪ D2 is the union of two combinatorial d-balls that intersect
along the combinatorial (d − 1)-manifold D1 ∩ D2. Hence D1 ∪ D2 is a combinatorial
d-manifold, and ∂(D1 ∪ D2) is a combinatorial (d− 1)-manifold.

Since D1 ∩ D2 = ∂D1 ∩ ∂D2, we have that the intersection of ∂D1\∂D2 and D1 ∩ D2 is
exactly ∂(D1 ∩ D2). We apply the Mayer-Vietoris sequence on (∂D1\∂D2, D1 ∩ D2, ∂D1),
and by condition (2) we obtain that ∂D1\∂D2 has the same homology as Sd−i−1.

Note that the intersection of(
∂D1\∂D2

)
∩
(
∂D2\∂D1

)
= ∂(∂D1 ∩ ∂D2) = ∂(D1 ∩ D2).

We then apply the Mayer-Vietoris sequence to (∂D1\∂D2, ∂D2\∂D1, ∂(D1 ∪D2)). By con-
dition (3), we find that ∂(D1 ∪ D2) has the same homology as Si× Sd−i−1.

Finally, the complex D1 ∪ D2 is simply connected, since the union of two simply
connected open subsets intD1, intD2 with path-connected intersection D1 ∩ D2 is simply
connected. We conclude from condition (1) and Theorem 3.1 that ∂(D1∪D2) triangulates
Si× Sd−i−1. �

The above proposition provides us with a general method of constructing a triangu-
lation of Si× Sd−i−1.
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3.1 A triangulation of S2× Sd−3

Let τ be a face of ∂C∗d and let κ(τ) count the number of y labels in τ. Define Γj to be
the union of facets τ in ∂C∗d that have at most 2 switches and with κ(τ) = j. Hence for
1 ≤ j ≤ d − 1, the complex Γj consists of d facets τk

j = {x1, . . . , xd}\{xk, . . . xk+j−1} ∪
{yk, . . . , yk+j−1} for 1 ≤ k ≤ d.

Lemma 3.3. The complex ∪i
k=0Γk is a shellable (d− 1)-ball for all 0 ≤ i ≤

⌈
d+1

2

⌉
.

Proof: The (d− 1)-ball ∪i
k=0Γk has a shelling order {x1. . . . .xd}, τ1

1 , . . . , τd
1 , . . . τ1

i , . . . , τd
i .

�

We propose the candidates D1, D2 ⊆ ∂C∗d+1 that satisfy the conditions in Proposi-
tion 3.2.

Construction 3.4. For d ≥ 3, define two simplicial d-balls D1, D2 as a subcomplex of the
octahedral d-sphere on vertex set {x1, y1, . . . , xd+1, yd+1} as follows:

1. For d is odd, let m = d−1
2 . Define D1 = (∪m+1

k=0 Γk) ∗ {xd+1} and D2 = (∪d
k=mΓk) ∗

{yd+1}. In particular, D1 ∩ D2 = Γm ∪ Γm+1 is cs.

2. For d is even, let m = d
2 and γ := ∪m

i=1τi
m−1 be a subcomplex of Γm−1. By the

definition, τk
j and τ

k+j
d−j are antipodal facets for any k, j. So −γ = ∪d−1

i=mτi
m+1 ⊆ Γm+1.

In this case we let

D1 =
(
(∪m

k=0Γk) ∪ (−γ)
)
∗ {xd+1}, D2 =

(
(∪d

k=mΓk) ∪ γ
)
∗ {yd+1}.

In particular, D1 ∩ D2 = Γm ∪ γ ∪ (−γ) is centrally symmetric.

Next we show that ∂(D1 ∩D2) ∼= S1× Sd−3. Given two facets F1, F2 ∈ ∂C∗d , let d(F1, F2)
be the distance from F1 to F2 in the facet-ridge graph of ∂C∗d .

Lemma 3.5. Let ∆ be a combinatorial (d − 1)-manifold in ∂C∗d whose facet-ridge graph is a
2d-cycle. Enumerate its facets as σ1, σ2, . . . σ2d such that σi, σi+1 are adjacent for 1 ≤ i ≤ 2d. If
σi = −σd+i for all i, then ∆ triangulates S1×Dd−2.

Proof: Let σ1 = {u1, . . . , ud}. By the assumption, σd+1 = {−u1, . . . ,−ud}. Since
d(σ1, σd+1) = d in ∂C∗d , the sequence σ1, σ2, . . . , σd+1 gives the shortest path from σ1 to
σd+1. So it follows that there is an ordering of the vertices, say (u1, . . . , ud), such that
σi+1 = σi\{ui} ∪ {−ui}. Together with σi = −σi+d for all i, we see that ∆ ∼= B(1, d) as
defined in [4]. Hence as B(1, d), ∆ also triangulates S1×Dd−2. �

Lemma 3.6. The complex D1 ∩ D2 constructed above triangulates S1×Dd−2.
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Proof: For odd d and m = d−1
2 , we enumerate the facets of D1 ∩ D2 = Γm ∪ Γm+1 as

(σ1 . . . , σ2d) :=
(τ1

m, τ1
m+1, τ2

m, τ2
m+1, . . . , τd

m, τd
m+1).

Each σi has exactly two adjacent facets σi−1, σi+1, and so the facet-ridge graph of D1 ∪D2

is a 2d-cycle. Furthermore, τ
j
m = −τ

j+m
m+1 by the definition. So the claim follows from

Lemma 3.5. The proof is similar for d is even. �

Theorem 3.7. The complex ∂(D1 ∪ D2) triangulates S2× Sd−3 for d ≥ 5.

Proof: This follows from Lemmas 3.3 and 3.6 and Proposition 3.2. �

Property 3.8. For the complex ∂(D1 ∪ D2) in Construction 3.4:

1. It has 2d + 2 vertices.

2. It contains the 2-skeleton of ∂C∗d+1.

3. It admits vertex-transitive actions by the group Z2×Dd if d is odd, and by Z2 if d is even.

Remark 3.9. For d is odd, three types of vertex-transitive action on ∂(D1 ∪D2) are given
by

• D maps xj to yj, and yj to xj, for 1 ≤ j ≤ d + 1.

• R fixes xd+1, yd+1, and maps xj, yj to xd−j+1, yd−j+1 respectively, for 1 ≤ j ≤ d.

• S fixes xd+1, yd+1, and maps xj, yj to xj+1, yj+1 (modulo d) respectively.

Comparing with the group actions on B(2, d + 1) in [4], we see that ∂(D1 ∪ D2) and
∂B(2, d + 1) are combinatorially distinct.

Remark 3.10. There are many other ways to construct D′1, D′2 as the subcomplex of ∂C∗d+1
that satisfies the conditions in Proposition 3.2. For example, when d = 2m + 1, let
τ = {x1, . . . xd}, −τ = {y1, . . . , yd}. It is possible to construct a simplicial (d− 1)-ball B
in ∂C∗d and simplicial d-balls

D′1 = (B ∪ Γm ∪ Γm+1) ∗ {xd+1}, D′2 =
(
(−B) ∪ Γm ∪ Γm+1

)
∗ {yd+1}

such that

B ∪ (−B) = ∂C∗d , B ⊇ {σ : |σ ∩ τ| ≥ m}, −B = {σ : |σ ∩ (−τ)| ≥ m}.

Furthermore, D′1 ∩ D′2 = Γm ∪ Γm+1. When d = 2m, D′1, D′2 can also be defined in the
same spirit as Construction 3.4.



Triangulations of the product of spheres with few vertices 7

3.2 The triangulation of other sphere products

The goal of this section is to construct a triangulation of Si× Sd−i−1 as a subcomplex of
∂C∗d+2 from a given triangulation of Si−1× Sd−i−1 in ∂C∗d+1, for i ≤ d−1

2 .

Proposition 3.11. Let D1 and D2 be cones over two combinatorial (d− 1)-balls in ∂C∗d whose
coning points are xd+1, yd+1 respectively. Furthermore,

1. The union of D1\{xd+1} and D2\{yd+1} covers ∂C∗d .

2. D1 ∩ D2 is a path-connected combinatorial (d− 1)-manifold that has the same homology
as Si−1 for some 2 ≤ i ≤ d− 2.

3. ∂(D1 ∩ D2) has the same homology as Si−1× Sd−i−1.

Let

E1 = (st(yd+1, ∂C∗d+1) ∪ D1) ∗ {xd+2}, E2 = (st(xd+1, ∂C∗d+1) ∪ D2) ∗ {yd+2}.

Then the union of E1\{xd+2} and E2\{yd+2} covers ∂C∗d+1, E1 ∩ E2 is a combinatorial d-
manifold that has the same homology as Si and ∂(E1 ∪ E2) triangulates Si+1× Sd−i−1.

Proof: By condition (1), E1 ∩ E2 = D1 ∪D2. Then we use the Mayer-Vietoris sequence on
the triple (D1, D2, D1 ∪ D2) and conclude from Theorem 3.1. The proof is similar to that
of Proposition 3.2. �

Construction 3.12. We take our base construction ∂(D′1 ∪ D′2) as given in Remark 3.10
(Note that the complexes D1, D2 in Construction 3.4 does not satisfy the condition that
the union of D1\{xd+1} and D2\{yd+1} covers ∂C∗d .) and apply the above proposition
inductively. This gives us a family of cs triangulations of sphere products S2× Sd−3,
S3× Sd−3, . . . , Sd−3× Sd−3. Each triangulation of Si× Sd−3 has 2d + 2i− 2 vertices.

4 A balanced triangulation of S2× Sd−3

In this section, we present our main construction for a balanced triangulation of S2× Sd−3.
The geometric intuition of our construction comes from handle theory. The sphere Sd

admits the following decomposition, see [9]:

Sd−1 = (S1×Dd−2) ∪ (D2 × Sd−3).

Let S be a triangulated (d− 1)-sphere that has the decomposition S = B1 ∪∂B1=∂B2 B2,
where B1

∼= S1×Dd−2, B2
∼= D2 × Sd−3, and ∂B1

∼= ∂B2
∼= S1× Sd−3. Note that S2× Sd−3

admits the decomposition into (D2 × Sd−3) ∪ (D2 × Sd−3) ∼= B2 ∪ B2. Then, from S we
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can form a triangulation of S2× Sd−2 in the following way: take two copies of B2 and
denote them as B2 and B′2. If ∂B2 is an induced subcomplex in B2, then we glue B2

and B′2 along their boundaries. The resulting complex is homeomorphic to S2× Sd−3.
However, if ∂B2 is not an induced subcomplex of B2, then usually we cannot glue B2 and
B′2 by identifying their boundaries directly and still obtain a triangulated manifold. An
alternative method is to find a complex N ∼= ∂B2 ×D1 with ∂N = ∂B2 ∪ ∂B′2 so that N
serves as a tubular neighborhood of both ∂B2 and ∂B′2. Finally the complex B2 ∪ N ∪ B′2
is a triangulation of S2× Sd−3.

Our approach of constructing a balanced triangulation of S2× Sd−3 is by finding
suitable balanced candidates of B2 and N as described above.

Definition 4.1. Consider (Γ1, σ1) and (Γ2, σ2), where Γi is the boundary complex of the
d-cross-polytope, and σi is a fixed facet of Γi. Let κ be the coloring map on Γ1 ∪ Γ2.
If ei is an edge in Γi but not in ±σi and κ(e1) = κ(e2), then the 3-connected sum
(Γ1#Γ2, σ1#σ2) is obtained by deleting ei from Γi, and gluing Γ1 − e1 with Γ2 − e2 by
identifying st(e1)[V(σ1)] with st(e2)[V(σ2)], and st(e1)[V(−σ1)] with st(e2)[V(−σ2)].

y1

x′
3

x′
2

y2

x′
1

y3

x′
2

x′
1

y3

y2

x1

y′3

(a) Γ1 and Γ2; here σ1 = {y1, y2, y3} and
σ2 = {x1, y2, y3}

y1

x′
3

x′
2

y3

y2

x1

y′3

x′
1

(b) (Γ1#Γ2, σ1#σ2)

Figure 1: The 3-connected sum (Γ1#Γ2, σ1#σ2): delete the edge {y3x′1} in both Γ1 and
Γ2, then glue Γ1 and Γ2 along the 4-cycle (y3, x′2, x′1, y2).

The following properties of the 3-connected sum justify the notation (Γ1#Γ2, σ1#σ2)
in the definition.

Property 4.2. Let Γ1 and Γ2 be two d-crosspolytopes. Furthermore, Γ1 has antipodal facets σ1 =
{x1, . . . , xd}, −σ1 = {y1, . . . , yd}, and Γ2 has antipodal facets σ2 = {xd+1, . . . , x2d}, −σ2 =
{yd+1, . . . , y2d}. Then (Γ1#Γ2, σ1#σ2) satisfies the following properties:

1. The complex is a balanced triangulation of Sd−1.
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2. The restriction of (Γ1#Γ2, σ1#σ2) to V(σ1)∪V(σ2) is the usual connected sum of simplices
σ1#σ2.

3. The link of every edge e = {xi, yj} in (Γ1#Γ2, σ1#σ2) is the boundary complex of a (d− 2)-
crosspolytope.

The above properties ensure that it is possible to take the 3-connected sum induc-
tively. Also recall that if Γ is a pure simplicial complex, then as long as there exist two
facets F and F′ on Γ and a map φ : F → F′ so that v and φ(v) do not have a common
neighbor for every v ∈ F, then we can remove F, F′ and identify ∂F with ∂F′ to get Γφ.
This is called a handle addition. Similarly, assume that there are two edges e1 and e2 of the
same color in (Γ1# . . . #Γk, σ1# . . . #σk) but not in A := σ1#σ2 . . . #σk or −A. Note that st(ei)
is a cross-polytope with antipodal facets st(ei)[V(A)] and st(ei)[V(−A)] for i = 1, 2. If
the identification maps

φ : st(e1)[V(A)]→ st(e2)[V(A)] and φ′ : st(e1)[V(−A)]→ st(e2)[V(−A)]

are well-defined, then the maps φ and φ′ naturally extend to a map

φ̄ : st(e1)→ st(e2)

if for every v ∈ st(e1), v and φ(v)(or φ′(v)) do not have a common neighbor. In this way
we obtain a balanced simplicial complex ((Γ1#Γ2 . . . #Γk)

φ̄, (σ1#σ2 . . . #σk)
φ) by removing

e1, e2 and identifying lk(e1) with φ̄(lk(e1)) = lk(e2). We call this the 3-handle addition.
We are now ready to construct a balanced triangulation of S2× Sd−3 with 4d vertices.

We will write Γ1#Γ2 to denote the 3-connected sum if σ1 and σ2 are clear from the
context. Also, to simplify notation, we will sometimes write x1 . . . xm to denote the face
{x1, . . . , xm}.

Construction 4.3. Let d ≥ 3. Take two d-crosspolytopes P and P′. The vertex sets
of P and P′ are {x1, . . . , xd, y1, . . . , yd} and {x′1, . . . , x′d, y′1, . . . , y′d} respectively. We let
σi = x1 . . . xiyi+1 . . . yd for 1 ≤ i ≤ d and let σi = y1 . . . yixi+1 . . . xd for d + 1 ≤ i ≤ 2d.
Then the complex ∆1 := ∪2d

i=1σi is exactly B(1, d). We further partition the boundary of
P as ∂P = ∆1 ∪∂∆1 ∆2. By Lemma 1.1, ∆2

∼= B(d− 3, d) and ∆1 ∩ ∆2 is homeomorphic to
S1× Sd−3.

Next, define a simplicial map f : ∂P→ ∂P′ induced by the following bijection on the
vertex sets:

xi 7→ x′i+1, yi 7→ y′i+1 for 1 ≤ i ≤ d− 1; xd 7→ y′1, yd 7→ x′1.

By Lemma 2.1, the complex ∆1 admits a vertex-transitive action by the dihedral group
D2d of order 4d, where a generator is given by the map we have chosen (Theorem 1.2
of [4]). Hence f is a simplicial isomorphism and f (∆1) ∼= B(1, d). For each i, there
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is a unique d-cross-polytope Γi containing σi and f (σi) as antipodal facets. Next, we
check that we can take the 3-connected sum of Γi and Γi+1 inductively. Without loss of
generality, assume that 1 ≤ i ≤ d; otherwise, we can relabel by switching x and y. Note
that for i ≤ d− 2,

σi ∩ σi+1 = x1x2 . . . xiyi+2 . . . yd, and f (σi) ∩ f (σi+1) = x′2x′3 . . . x′i+1y′i+3 . . . y′dy′1.

The missing indices are i + 1 and i + 2 respectively, so we let ei = x′i+1yi+2. It follows that
Γi ∩ Γi+1 = st(ei, Γi) = st(ei, Γi+1) and hence the 3-connected sum is well defined. Sim-
ilarly, Γd−1 ∩ Γd = st({x′d, x1}, Γd) and Γd ∩ Γd+1 = st({y′1, x2}, Γd). Inductively, we form
a complex Γ = ((Γ1#Γ2 . . . #Γ2d)

φ̄, ∆1) which contains ∆1 and f (∆1) as subcomplexes.
We partition Γ as Γ = ∆1 ∪ f (∆1)∪ N, so that N ∩∆1 = ∂∆1 and N ∩ f (∆1) = ∂ f (∆1).

N is then the tubular neighborhood that we would like to construct. Finally, let Σ =
∆2 ∪∂∆1 N ∪∂ f (∆1)

f (∆2). (This is well defined as by Lemma 2.1, ∂∆1
∼= ∂∆2.) As shown

in Figure 2, when d = 3, σ gives the minimal balanced triangulation of S0× S2.

x1

y3

x1

x3

x2

y1

y2

σ1

σ2

σ3

σ4

σ5

σ6

(a) ∆1

y′2

y′1

x′2

x′3

y′3

x′1f(σ1)

f(σ6)

f(σ5)

f(σ4)

f(σ3)

f(σ2)

(b) f (∆1)

y′3

y2

x1

x3

x′
2

y′1

y′2 x′
3

x′
1

y3 x2

y1

(c) Γ

Figure 2: The complexes ∆1 and f (∆1) when d = 3, and the resulting Γ constructed
using the previously described sequence of connected sums.

Next to prove Σ indeed triangulates S2× Sd−3, we check that Σ satisfies all the condi-
tions as described in Theorem 3.1.

Lemma 4.4. The complex Σ in Construction 4.3 is simply connected codimension-1 submanifold
of Sd for d ≥ 5.

Proposition 4.5. The complex Σ in Construction 4.3 is a balanced triangulation of S2× Sd−3

for d ≥ 3.

Proof: Applying the Mayer-Vietoris sequence to the triple (∆2 ∪ f (∆2), N, Σ), we find
that Σ has the same homology as S2× Sd−3, and so the result follows by Lemma 4.4 and
Theorem 3.1. �
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Property 4.6. For d ≥ 5, the complex Σ in Construction 4.3 satisfies:

1. f0(Σ) = 4d;

2. f1(Σ) = 4d(2d− 3);

3. fd−1(Σ) = (d + 2)2d − 8d;

4. Aut(Σ) admits a vertex-transitive action of Z2 ×D2d.

Remark 4.7. Working with Lorenzo Venturello, we created a CROSSFLIP program for
balanced complexes to attempt to reduce the number of vertices of a given triangula-
tion. However, the complexity of finding shellable subcomplexes in the d-cross-polytope
grows exponentially with d, and so the program is highly inefficient for d > 4. [4]
showed that a balanced triangulation of a non-sphere (d− 1)-manifold requires at least
3d vertices. It is not known that apart from the sphere bundle over the circle, if there are
other manifolds that admit balanced triangulations with 3d vertices.
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