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Combinatorics of generalized exponents
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Abstract. We give a purely combinatorial proof of the positivity of the stabilized forms
of the generalized exponents associated to each classical root system. In finite type Cn,
we obtain a combinatorial description of the generalized exponents based on symplec-
tic King tableaux. We also present three applications of our combinatorial formula.
Our methods are expected to extend to the orthogonal types.

Résumé. Pour chaque système de racines de type classique, nous donnons une preuve
combinatoire de la positivité de la forme stabilisée des exposants généralisés. En type
Cn, nous obtenons une description combinatoire des exposants généralisés en termes
de tableaux de King et en donnons trois applications. Nos méthodes doivent s’étendre
aux types orthogonaux.

Keywords: Weyl characters, Lusztig q-analogues, representation theory, crystals, branch-
ing rules.

1 Introduction

Let g be a simple Lie algebra over C of rank n and G its corresponding Lie group.
The group G acts on the symmetric algebra S(g) of g, and it was proved by Kostant
[8] that S(g) factors as S(g) = H(g)⊗ S(g)G, where H(g) is the harmonic part of S(g).
The generalized exponents of g, as defined by Kostant [8], are the polynomials appear-
ing as the coefficients in the expansion of the graded character of H(g) in the basis of
the Weyl characters. It was shown by Hesselink [2] that these polynomials coincide, in
fact, with the Lusztig t-analogues [17] of zero weight multiplicities in the irreducible
finite-dimensional representations of g. In particular, they have non-negative integer
coefficients, because they are affine Kazhdan–Lusztig polynomials.

For g = sln, the generalized exponents admit a nice combinatorial description in
terms of the Lascoux–Schützenberger charge statistic on semistandard tableaux of zero
weight [12]. This statistic is defined via the cyclage operation on tableaux, which is based
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on the Schensted insertion scheme. This combinatorial description extends, in fact, to
any Lusztig t-analogue of type An−1, that is, possibly associated to a nonzero weight
(also called Kostka polynomials). Another interpretation of the charge statistic in terms
of crystals [3, 6] of type An−1 was given later by Lascoux, Leclerc and Thibon in [11].

Despite many efforts during the last three decades, no general combinatorial proof
of the positivity of the Lusztig t-analogues is known beyond type A. Nevertheless such
proofs have been obtained in some particular cases [4], [5], [13] and [14].

In this extended abstract, we give a combinatorial description of the stabilized version
of the generalized exponents and a proof of their positivity by using the combinatorics
of type A+∞ crystal graphs. This can be regarded as a generalization of results in [11]
for the weight zero, and in fact we were able to rederive the latter without any reference
to the charge statistic or the combinatorics of semistandard tableaux. Our description
is in terms of the so-called distinguished vertices in crystals of type A+∞, but we show
that these vertices are in natural bijection with some generalizations of symplectic King
tableaux, which makes the link with stable Lusztig t-analogue more natural. Next, we
provide a complete combinatorial proof of the positivity of the generalized exponents
in the non-stable Cn case. Observe there that the non-stable case is much more involved
than the stable one, essentially because we need a combinatorial description of the non-
Levi branching from gl2n to sp2n, which is complicated in general. Here one needs in
a crucial way recent duality results by Kwon [9, 10] giving a crystal interpretation of
the previous branching and a combinatorial model relevant to its study. We strongly
expect that our approach extends to the orthogonal types, once all the results of [10]
are available for the non-Levi orthogonal branchings. We refer the reader to [15] for
complete proofs and more results.

Section 2 recalls the definition of the generalized exponents. Section 3 is devoted
to the combinatorial description of the stabilized form (in classical type) of the general-
ized exponents in terms of distinguished tableaux, which we define and study here. In
Section 4, we give the promised combinatorial description of the generalized exponents
in type Cn by using King tableaux [7]. In Section 5, we give three applications of the
description in Section 4.

2 Generalized exponents

2.1 Background

Let gn be a simple Lie algebra over C of rank n with triangular decomposition gn=⊕α∈R+

gα ⊕ h⊕ ⊕α∈R+g−α ,so that h is the Cartan subalgebra of gn and R+ its set of positive
roots. The root system R = R+ t (−R+) of gn is realized in a real Euclidean space
E with inner product (·, ·). For any α ∈ R, we write α∨ = 2α

(α,α) for its coroot. Let
S ⊂ R+ be the subset of simple roots and Q+ the Z+-cone generated by S. The set
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P of integral weights for gn satisfies (β, α∨) ∈ Z for any β ∈ P and α ∈ R. We write
P+ = {β ∈ P | (β, α∨) ≥ 0 for any α ∈ S} for the cone of dominant weights of gn, and
denote by ω1, . . . , ωn its fundamental weights. Let W be the Weyl group of gn generated
by the reflections sα with α ∈ S, and write ` for the corresponding length function.

By a classical theorem due to Kostant, the graded character of the harmonic part of
the symmetric algebra S(gn) satisfies

chart(H(gn)) =
∏n

i=1(1− tdi)

(1− t)n ∏
α∈R

1
1− teα

=
n

∏
i=1

(1− tdi)chart(S(gn)) ,

where we have di = mi + 1, for i = 1, . . . , n, and m1, . . . , mn are the (classical) exponents
of gn. In type An we have mi = i, in types Bn and Cn mi = 2i − 1 and in type Dn
mi = 2i− 1 for i = 1, . . . , n− 1 with mn = n− 1. On the other hand, it is known (see [2])
that chart(H(gn)) coincides with the Hall-Littlewood polynomial Q′0, namely we have

chart(H(gn)) = Q′0 = ∑
λ∈P+

Kgn
λ,0(t)s

gn
λ ,

where sgn
λ is the Weyl character associated to the finite-dimensional irreducible represen-

tation V(λ) of gn with highest weight λ. The polynomials Kgn
λ,0(t) are the generalized

exponents of gn, and they coincide with the Lusztig t-analogues [17] associated to the
zero weight subspaces in the representations V(λ). The classical exponents m1, . . . , mn
correspond to the adjoint representation of gn, namely we have Kgn

α̃,0(t) = ∑n
i=1 tmi ,where

α̃ is the highest root in R+.

2.2 Classical types

In classical types, chart(S(gn)) is easy to compute. Let Pn be the set of partitions with at
most n parts, and P the set of all partitions. The rank of the partition γ is defined as the
sum of its parts, and is denoted by |γ|.

In type An−1, we start from the Cauchy identity

∏
1≤i,j≤n

1
1− txiyj

= ∑
γ∈Pn

t|γ|sγ(x)sγ(y).

Here sν(x) stands for the ordinary Schur function in the variables x1, . . . , xn. By setting
yi =

1
xi

for any i = 1, . . . , n, and by considering the images of the symmetric polynomials
in RAn−1 = Sym[x1, . . . , xn]/(x1 · · · xn − 1), we get

chart(S(sln)) = (1− t) ∑
γ∈Pn

t|γ|sγ(x)sγ(x−1) = (1− t) ∑
γ∈Pn

t|γ|sγsγ∗ = (2.1)

= (1− t) ∑
γ∈Pn

t|γ| ∑
λ∈Pn−1

cλ
γ,γ∗sλ(x) .
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Here γ∗ = −w◦(γ), where w◦ is the permutation of maximal length in Sn and the
cλ

γ,γ∗ ’s are the Littlewood-Richardson coefficients. We also use the same notation for a
symmetric polynomial and its image in RAn−1 .

For any positive integer m, define P (2)
m as the set of partitions of the form 2κ with κ ∈

Pm, and P (1,1)
m as the subset of Pm containing the partitions of the form (2κ)′ with κ ∈ P .

Moreover, we denote by sso2n+1
λ , ssp2n

λ , and sso2n
λ the irreducible characters corresponding

to the highest weight λ, for the Lie algebras of types Bn, Cn, and Dn, respectively.
In type Bn, we start from the Littlewood identity [16]

∏
1≤i<j≤2n+1

1
1− tyiyj

= ∑
ν∈P (1,1)

2n+1

t|ν|/2sν(y) ,

and we specialize y2n+1 = 1, y2i−1 = xi, and y2i =
1
xi

, for any i = 1, . . . , n. This gives

chart(S(so2n+1)) = ∑
ν∈P (1,1)

2n+1

t|ν|/2 ∑
λ∈Pn

cλ
ν (so2n+1)s

so2n+1
λ ,

where cλ
ν (so2n+1) is the branching coefficient corresponding to the restriction from gl2n+1

to so2n+1. Similarly, we get:

chart(S(sp2n)) = ∑
ν∈P (2)

2n

t|ν|/2 ∑
λ∈Pn

cλ
ν (sp2n)s

sp2n
λ and

chart(S(so2n)) = ∑
ν∈P (1,1)

2n

t|ν|/2 ∑
λ∈Pn

cλ
ν (O2n)s

O2n
λ .

Note that here we considered the character sO2n
λ of the O(2n)-module VO(2n)(λ)

parametrized by the partition λ.

Proposition 2.1. We have the following identities.

1. In type An−1, for any λ ∈ Pn−1, we have
Ksln

λ,0 (t)

∏n
i=1(1−ti)

= ∑γ∈Pn t|γ|cλ
γ,γ∗ .

2. In type Bn, for any λ ∈ Pn, we have
K
so2n+1
λ,0 (t)

∏n
i=1(1−t2i)

= ∑
ν∈P (1,1)

2n+1
t|ν|/2cλ

ν (so2n+1) .

3. In type Cn, for any λ ∈ Pn, we have
Ksp2n

λ,0 (t)

∏n
i=1(1−t2i)

= ∑
ν∈P (2)

2n
t|ν|/2cλ

ν (sp2n) .

4. In type Dn, for any λ ∈ Pn, we have
KO(2n)

λ,0 (t)

(1−tn)∏n−1
i=1 (1−t2i)

= ∑
ν∈P (1,1)

2n
t|ν|/2cλ

ν (O2n) .
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Observe that in the previous Assertion 1, the factor (1− t) in (2.1) gives the missing
“di = 1” in type An−1 and in Assertion 2, the partition λ can have an odd rank.

For type Dn, the dominant weights are not necessarily partitions, whereas this is the
case in Assertion 4 of the previous proposition. So here we have in fact to write

KO(2n)
λ,0 (t) = Kso2n

ω(λ),0(t) = Kso2n
ι(ω(λ)),0(t)

for any partition λ ∈ Pn \ Pn−1 and ω(λ).
We have then by a theorem of Lascoux and Schützenberger [12]

Ksln
λ,0(t) = ∑

T∈SST(λ)0

tchn(T) ,

where SST(λ)0 is the set of semistandard tableaux labeled by letters of {1 < · · · < n} of
weight µ = (a, . . . , a) = 0 (i.e. each letter i appear a times in T) where a = |λ| /n, and
chn(T) is the charge statistic evaluated on T. Recall that this charge statistic is defined
by rather involved combinatorial operation such as cyclage on tableaux.

2.3 Stable versions

When the ranks of the classical root systems considered go to infinity, the previous
relations simplify. In particular, for n sufficiently large, we have

cλ
ν (so2n+1) = ∑

δ∈P
cν

λ,2δ , cλ
ν (sp2n) = ∑

δ∈P
cν

λ,(2δ)′ , and cλ
ν (so2n) = ∑

δ∈P
cν

λ,2δ .

Observe that, for g = so2n+1, this implies in particular that cλ
ν (so2n+1) = 0 when the

ranks of λ and ν do not have the same parity, which is false in general. Thus when |λ|
is even, we get the relations

KB∞
λ,0(t)

∏∞
i=1(1− t2i)

=
KD∞

λ,0 (t)

∏∞
i=1(1− t2i)

= ∑
ν∈P (1,1)

∑
δ∈P (2)

t|ν|/2cν
λ,δ in type B∞, D∞,

KC∞
λ,0(t)

∏∞
i=1(1− t2i)

= ∑
ν∈P (2)

∑
δ∈P (1,1)

t|ν|/2cν
λ,δ in type C∞ .

In particular, this gives

KB∞
λ,0(t) = KD∞

λ,0 (t) and KB∞
λ,0(t) = KC∞

λ′,0(t) . (2.2)

All these stabilized forms are in fact formal power series in t equal to zero when the
rank of λ is odd.
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3 Stabilized generalized exponents and crystal graphs of
type A+∞

3.1 Crystal of type A+∞

We refer to [3, 6] for complements on Kashiwara’s crystals, including the standard nota-
tion. Recall that crystals of type A+∞ are those associated to the infinite Dynkin diagram

1◦ − 2◦ − 3◦ · ··

The partitions label the dominant weights of sl+∞. If we denote by (ωi)≥1 the sequence
of fundamental weights of sl+∞, we have for any partition λ ∈ P , λ = ∑i aiωi , where ai
is the number of columns with height i in the Young diagram of λ.

To each partition λ corresponds the crystal B(λ) of the irreducible infinite-dimensional
representation of sl+∞ parametrized by λ. A classical model for B(λ) is that of semis-
tandard tableaux of shape λ on the infinite alphabet Z>0 = {1 < 2 < 3 < · · · }. Given
b ∈ B(λ), we define ε(b) = ∑+∞

i=1 εi(b)ωi and ϕ(b) = ∑+∞
i=1 ϕi(b)ωi , where both sums are

in fact finite. The weight of b ∈ B(λ) then verifies wt(b) = ϕ(b)− ε(b).

3.2 Combinatorial preliminaries

In the sequel we consider the order ≤ on P such that λ ≤ µ if and only if µ− λ ∈ P∞
+ ,

that is, µ− λ decomposes in the basis of the ωi’s with non-negative integer coefficients.
The partitions in P (2) (resp. in P (1,1)) are those which can be tiled with horizontal

(resp. vertical) dominoes. Equivalently, a partition κ belongs to P (2) (resp. P (1,1)) if and
only if the number of columns (resp. rows) of fixed height (resp. length) is even. So

κ ∈ P (2) ⇐⇒ κ = ∑
i

2aiωi and κ ∈ P (1,1) ⇐⇒ κ = ∑
i

aiω2i .

Set P� = P (2) ∩ P (1,1). It follows that

κ ∈ P� ⇐⇒ κ = ∑
i

2aiω2i ,

that is, λ decomposes in terms of the fundamental weights ω2i with even coefficients. In
the general case of a partition κ ∈ P written as κ = ∑i aiωi we define

κ� = ∑
i
(a2i − (a2i mod 2))ω2i and κ� = κ − κ� = ∑

i
a2i+1ω2i+1 + ∑

i
(a2i mod 2)ω2i .

So κ� and κ� are partitions and κ� ∈ P�.
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We denote by P∞
(2) and P∞

(1,1) the sublattices of P = ⊕i≥1Zi defined by P∞
(2) = ⊕i≥12Zi

and P∞
(1,1) = ⊕i≥1Z2i . Observe that P∞

(2) ∩ P = P(2) and P∞
(1,1) ∩ P = P(1,1). We have also

P∞
� = P∞

(2) ∩ P∞
(1,1) = ⊕i≥12Z2i and P� = P ∩ P∞

(2) ∩ P∞
(1,1). We define the order ≤� on P

by λ ≤� µ⇐⇒ µ− λ ∈ P�.

3.3 A combinatorial description of the series KC∞
λ,0(t)

Definition 3.1. Consider a partition µ. A vertex b ∈ B(λ) is called µ-distinguished if there
exists (ν, δ) ∈ P (2) ×P (1,1) such that ϕ(b) = ν− µ and ε(b) = δ− µ.

Definition 3.2. Let D(λ) be the set of all vertices in B(λ) which are µ-distinguished for at least
a partition µ.

Clearly, if b is µ-distinguished, then b is (µ+ κ)-distinguished for any κ ∈ P� (change
(ν, δ) ∈ P (2) ×P (1,1) to (ν + κ, δ + κ) ∈ P (2) ×P (1,1)). For any b ∈ D(λ), set

Sb = {µ ∈ P | b is µ-distinguished} .

Lemma 3.3. The set Sb has the form Sb = µb + P� and µb is minimal for ≤� such that b is
µb-distinguished. Moreover, for any µ ∈ Sb, we have µb = µ�.

The following proposition makes more explicit the structure of the distinguished
tableaux.

Proposition 3.4. Let b be a vertex of B(λ) with λ ∈ P . Then b is distinguished if and only
if εi(b) = 0 for any odd i and ϕi(b) is even for any odd i. Moreover, we then have µb =

∑i(ϕ2i(b) mod 2)ω2i =: ϕ(b) mod 2 .

Theorem 3.5. We have KC∞
λ,0(t) = ∑b∈D(λ) t|ϕ(b)+µb|/2 .

3.4 Distinguished tableaux and zero weight King type tableaux

To see that the distinguished tableaux we introduced previously are in natural bijection
with zero weight tableaux very close to King tableaux, consider the sets TC∞(λ) of semi-
standard tableaux of shape λ on the infinite ordered alphabet {1 < 1 < 2 < 2 < · · · }.
There will be no condition on the position of the barred letters here, contrary to the def-
inition of King tableaux. Recall the notation of Section 3.3. For any distinguished vertex
b in D(λ), set θ(b) = ϕ(b) + µb , and let θj(b) be the coefficient of ωj in the expansion of
θ(b). Since θ(b) is a dominant weight for sl∞, it can be regarded as a partition. Recall
also that |λ| is even, says |λ| = 2`. In the sequel of this section, we shall assume that
B(λ) is realized as the set of semistandard tableaux on the infinite ordered alphabet Z>0.
For any integer i ≥ 1, a reverse lattice skew tableau on {2i− 1, 2i} is a semistandard fill-
ing of a skew Young diagram with columns of height at most 2 by letters 2i− 1 and 2i
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whose Japanese reading is a lattice word (i.e., in each left factor the number of letters 2i
is less or equal to that of letters 2i− 1).

Example 3.6. Assume i = 2. Then

3 3 3 3
3 3 4 4 4

3 3 4
3 3 4 4

(3.1)

is a reverse lattice skew tableau on {3, 4}.

The following proposition is a reformulation of Proposition 3.4.

Proposition 3.7. A semistandard tableau T of shape λ is distinguished if and only if for any
integer i ≥ 1, the skew tableau obtained by keeping only the letters 2i− 1 and 2i in T is a reverse
lattice tableau, and the rows of θ(T) have even lengths.

We now explain the correspondence between distinguished tableaux and zero weight
King type tableaux. Observe that a tableau T in TC∞(λ) of weight zero is a juxtaposition
of skew tableaux of weight 0 on {i, ı} obtained by keeping only the letters i and ı. So
to obtain a bijection between the set of distinguished tableaux of shape λ and the subset
T0

C∞
(λ) ⊂ TC∞(λ) of zero weight tableaux, it suffices to describe a bijection between the

set of reverse lattice tableaux on {2i− 1, 2i} of given shape and weight in 2ωiZ≥0, and
the set of skew tableaux on {i, ı} with weight 0. Now recall that we have the structure
of a Uq(sl2)-crystal on the set of all skew semistandard tableaux of fixed skew shape
both on {2i− 1, 2i} and {i, ı}. By replacing each letter 2i− 1 by i and each letter 2i by
ı, we get a crystal isomorphism f . The distinguished tableaux correspond to the highest
weight vertices of weight in 2ωiZ≥0 for the {2i− 1, 2i}-structure, whereas the tableaux
of weight 0 give the vertices of weight 0 in the {i, ı}-crystal structure. By observing that
only Uq(sl2)-crystals with highest weight in 2ωiZ≥0 admit a vertex of weight 0, which is
then unique, we obtain that the map C which associates to each zero weight vertex in the
{i, ı}-crystal structure its highest weight vertex in the {2i− 1, 2i}-crystal structure is the
bijection we need. More precisely, the map C (resp. its inverse) is obtained as usual: we
start by encoding in the reading of each {i, ı}-tableau (resp. of each {2i− 1, 2i}-tableau)
the letters i by + and the letters ı by − (resp. the letters 2i− 1 by + and the letters 2i− 1
by −), and next by recursively deleting all the factors +−, thus obtaining a reduced word
of the form −m+m (resp. +2m). It then suffices to change the m letters ı corresponding
to the m surviving symbols − into i and to apply the isomorphism f−1 (resp. change m
letters 2i− 1 corresponding to the rightmost m surviving symbols + into 2i and apply
the isomorphism f ).
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Example 3.8. The skew tableau of weight 0 on {2, 2} corresponding to (3.1) is

2 2 2 2
2 2 2 2 2

2 2 2
2 2 2 2

In the sequel, we shall abuse the notation and identify the two crystal structures
corresponding up to the isomorphism f .

Example 3.9. Assume λ = (1, 1). Then we get

T0
C∞

(λ) =

{
k

k
| k ∈ Z≥1

}
and K0

C∞
(λ) =

{
k

k
| k ∈ Z≥2

}
.

This gives

H

(
k

k

)
=

2k− 1
2k

and ϕ

(
2k− 1

2k

)
= ω2k for any k ≥ 1.

Therefore

θ

(
2k− 1

2k

)
= 2ω2k for any k ≥ 1.

Finally KC∞
λ,0(t) = ∑k≥1 t2k = t2

1−t2 .

4 Type Cn generalized exponents via the Kwon model

In this section, we refine the results in Section 3.4 to the finite type Cn, based on Kwon’s
model for the corresponding branching coefficients [9, 10]. We also need to use a combi-
natorial map realizing the conjugation symmetry of Littlewood-Richardson coefficients.
It turns out that Kwon’s model, the version of the conjugation symmetry map used here,
and the distinguished tableaux in Section 3.3 fit together in a beautiful way. This allows
us to express the related statistic in terms of a natural combinatorial labeling of the ver-
tices of weight 0 in the corresponding type Cn crystal of highest weight λ, namely the
corresponding tableaux due to King [7].

Theorem 4.1. We have
KCn

λ,0(t) = ∑
T∈K0

Cn (λ)

tchCn (L(T)) ,

where

chCn(L(T)) =
2n−1

∑
i=1

(2n− i)
⌈

εi(L(T))
2

⌉
.
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Remarks 4.2. (1) There does not seem to be a simple way to express the related statistic
above directly in terms of T. However, the map T 7→ L(T) is a simple one.

(2) Theorem 4.1 gives a statistic for computing the Kostka–Foulkes polynomial on
King tableaux, rather than on the Kashiwara–Nakashima (KN). A natural question is
whether the statistic above can be translated to the KN tableaux and moreover if it
is related to the charge statistic constructed in [13] (which conjecturally computes the
Kostka–Foulkes polynomials). This question is addressed in [1].

We will now continue Example 3.9.

Example 4.3. Assume λ = (1, 1) in type Cn. Then we get

K0
Cn
(λ) =

{
k

k
| k = 2, . . . , n

}
.

This gives

L

(
k

k

)
=

2k− 1
2k

and ε∗
(

2k− 1
2k

)
= ω2(n−k+1) for any k = 2, . . . , n.

Therefore

θ∗n

(
2k− 1

2k

)
= 2ω2(n−k+1) for any k = 2, . . . , n.

Finally[KCn
λ,0(t) = ∑n−1

k=1 t2k = t2−t2n

1−t2 .

5 Three applications of Theorem 4.1

5.1 Growth of generalized exponents

First we analyze the growth of the generalized exponents of type Cn with respect to the
rank n. The (weight 0) symplectic King tableaux of type Cn embed into those of type
Cn+1 by changing the entries k, k to k + 1, k + 1, for all k, respectively. Moreover, it is easy
to see that this map preserves the statistic in Theorem 4.1. So we obtain the following
result, which to our knowledge is new.

Theorem 5.1. For any integer n and any partition λ with at most n parts, we have KCn+1
λ,0 (t)−

KCn
λ,0(t) ∈ Z≥0[t].
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5.2 Reducing a type C generalized exponent to one of type A

We now prove a conjecture of the first author [13]. This conjecture is the first step
in the construction of the type Cn charge statistic in [13], and proves the conjecture
that this charge computes the corresponding Kostka–Foulkes polynomials in the case
of column shapes; see Remarks 4.2 (2). We now label the Dynkin diagram of type
Cn such that the special node is n. Consider the fundamental weight ω2p, where p ∈
{1, . . . , bn/2c}. All the zero weight vertices in the crystal B(ω2p) belong to the same
type An−1 component, which has highest weight γp := ε1 + . . . + εp − εn−p+1 − . . .− εn,
where εi are the coordinate vectors in Rn. In type An−1, this weight corresponds to the
partition (1n−2p, 2p).

Theorem 5.2. We have KCn
ω2p,0(t) = KAn−1

γp,0 (t2) .

Remark 5.3. Theorem 5.2 also permits to establish the conjecture of [13] for Lusztig
t-analogues associated to any fundamental weight.

5.3 The smallest power of t in KCn
λ,0(t)

The largest power of t in KCn
λ,0(t) is well-known to be 〈λ, ρ∨〉, where ρ∨ is half the sum

of the positive coroots. Furthermore, it is also known that the smallest power is greater
or equal to |λ|/2. See [14]. As the third application of our formula for KCn

λ,0(t), we
will determine this smallest power. Let λ ∈ Pn be such that |λ| is even, and write
λ = ∑n

i=1 ai ωn+1−i. Define

sk :=
k

∑
i=1

ai , bi :=


ai + 1 if ai odd and si odd
ai − 1 if ai odd and si even
ai if ai even .

Also let s0 := 0 and S := sn.

Theorem 5.4. The smallest power of t in KCn
λ,0(t), for |λ| even, is

1
2

n

∑
i=1

(n + 1− i)bi =
|λ|
2

+
1
2 ∑

i : ai odd
(−1)si−1(n + 1− i) . (5.1)
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