
Séminaire Lotharingien de Combinatoire 82B (2019) Proceedings of the 31st Conference on Formal Power
Article #105, 8 pp. Series and Algebraic Combinatorics (Ljubljana)

Computing distance-regular graph and association
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Abstract. The sage-drg package for the SageMath computer algebra system has been
originally developed for computation of parameters of distance-regular graphs. Re-
cently, its functionality has been extended to handle general association schemes. The
package has been used to obtain nonexistence results for both distance-regular graphs
and Q-polynomial association schemes, mostly using the triple intersection numbers
technique.

Povzetek. Paket sage-drg za program za simbolno računanje SageMath je bil pr-
votno razvit za namene računanja parametrov razdaljno regularnih grafov. Njegova
funkcionalnost je bila nedavno razširjena s podporo za splošne asociativne sheme.
Paket je bil uporabljen pri dokazovanju neobstoja tako razdaljno regularnih grafov kot
tudi Q-polinomskih asociativnih shem, večinoma z uporabo tehnike računanja trojnih
presečnih števil.
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1 Introduction

Let X be a finite set of vertices and {R0, R1, . . . , RD} be a set of non-empty subsets of
X × X (i.e., binary relations on X). Let Ai denote the adjacency matrix of the graph
(X, Ri) (0 ≤ i ≤ D). The pair (X, {Ri}D

i=0) is called a (symmetric) association scheme with
D classes if the following conditions hold:

(1) A0 = I|X|, which is the identity matrix of size |X|,

(2) ∑D
i=0 Ai = J|X|, which is the square all-one matrix of size |X|,

(3) A>i = Ai (1 ≤ i ≤ D),

(4) Ai Aj = ∑D
k=0 pk

ij Ak, where pk
ij (the intersection numbers) are nonnegative integers (0 ≤

i, j ≤ D).
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Figure 1: Examples of association schemes with 3 classes with the same parameters.

Let us now consider the examples given in Figure 1. For each of them, we define
relations on their vertices. If u and v are vertices of the association scheme, we have
(u, v) ∈ R0 whenever u = v, (u, v) ∈ R1 when there is an edge between u and v,
(u, v) ∈ R2 when u and v have the same color, and (u, v) ∈ R3 if none of these apply.
Note that in the two examples on the left, the lines represent cliques, so (u, v) ∈ R1 holds
whenever u and v are in the same row or column (but not both), while the two examples
on the right are embedded on a torus (i.e., we identify parallel boundaries) and show
actual edges between the vertices. We can easily verify that these examples satisfy the
above conditions and thus represent association schemes with 3 classes. In fact, they all
share the same intersection numbers.

(p0
ij)

3
i,j=0 =


1 0 0 0
0 6 0 0
0 0 3 0
0 0 0 6

 (p1
ij)

3
i,j=0 =


0 1 0 0
1 2 1 2
0 1 0 2
0 2 2 2



(p2
ij)

3
i,j=0 =


0 0 1 0
0 2 0 4
1 0 2 0
0 4 0 2

 (p3
ij)

3
i,j=0 =


0 0 0 1
0 2 2 2
0 2 0 1
1 2 1 2


Nonetheless, the four association schemes can be checked to be mutually non-isomor-
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phic.
Let us now return to general association schemes. The vector space M over R

spanned by the matrices Ai (0 ≤ i ≤ D) forms an algebra (called the Bose-Mesner al-
gebra), which has a second basis {E0, E1, . . . , ED} consisting of projectors to the common
eigenspaces of the matrices Ai (0 ≤ i ≤ D). These projectors follow a property dual
to (4) above:

Ei ◦ Ej =
1
|X|

D

∑
k=0

qk
ijEk (0 ≤ i, j ≤ D).

Here, ◦ represents entrywise matrix multiplication. The constants qk
ij are called the Krein

parameters. The Krein parameters thus have a role dual to the intersection numbers,
although, unlike the latter, they are not required to be integral – however, by the Krein
condition, they must always be nonnegative. The Krein parameters of an association
scheme can be computed from its intersection numbers and vice-versa. In fact, we may
do so for the association schemes from Figure 1 using sage-drg1.

sage: import drg
sage: p = [[[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 3, 0], [0, 0, 0, 6]],
....: [[0, 1, 0, 0], [1, 2, 1, 2], [0, 1, 0, 2], [0, 2, 2, 2]],

....: [[0, 0, 1, 0], [0, 2, 0, 4], [1, 0, 2, 0], [0, 4, 0, 2]],

....: [[0, 0, 0, 1], [0, 2, 2, 2], [0, 2, 0, 1], [1, 2, 1, 2]]]

sage: scheme = drg.ASParameters(p)
sage: scheme.kreinParameters()
0: [1 0 0 0] 1: [0 1 0 0] 2: [0 0 1 0] 3: [0 0 0 1]

[0 6 0 0] [1 2 1 2] [0 2 0 4] [0 2 2 2]

[0 0 3 0] [0 1 0 2] [1 0 2 0] [0 2 0 1]

[0 0 0 6] [0 2 2 2] [0 4 0 2] [1 2 1 2]

We notice that the Krein parameters match the intersection numbers, showing that our
schemes are formally self-dual.

A standard problem in the theory of association scheme is that of existence and
classification: given a parameter set, does such an association scheme exist? If so, is
it unique? Can all examples be constructed? A parameter set is said to be feasible if
no condition is known that would rule out its existence. For more about association
schemes, see Bannai & Ito [1].

A special class of association schemes is that of P-polynomial (or metric) association
schemes. An association scheme is said to be P-polynomial whenever Ai = vi(A1),
where vi is a polynomial of degree i (0 ≤ i ≤ D), for some ordering of its relations.
Equivalently, the relation Ri corresponds to being at distance i in the graph (X, R1).
These graphs are precisely the distance-regular graphs, which have been extensively stud-
ied, and for which many tables of feasible parameters have been compiled [2, 3, 4, 6]. All

1The outputs have been condensed for brevity.
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the parameters of a P-polynomial association scheme can be computed from a subset of
its intersection numbers, namely bi = pi

1,i+1 (0 ≤ i ≤ D− 1) and ci = pi
1,i−1 (1 ≤ i ≤ D).

These are usually written as the intersection array {b0, b1, . . . , bD−1; c1, c2, . . . , cD}.
Dually, we may define a class of Q-polynomial (or cometric) association schemes as

those for which Ei = v∗i (E1), where v∗i is a polynomial (for entrywise multiplication) of
degree i (0 ≤ i ≤ D), for some ordering of its eigenspaces. Similarly as for P-polynomial
schemes, the parameters of a Q-polynomial association scheme can be computed from
a subset of its Krein parameters, namely b∗i = qi

1,i+1 (0 ≤ i ≤ D − 1) and c∗i = qi
1,i−1

(1 ≤ i ≤ D). These are usually written as the Krein array {b∗0 , b∗1 , . . . , b∗D−1; c∗1 , c∗2 , . . . , c∗D}.
Unlike for the P-polynomial association schemes, no general combinatorial characteri-
zation is known for Q-polynomial schemes. Although it was already Delsarte [8] who
noticed that many Q-polynomial association schemes are related to combinatorial de-
signs, they have only received considerable attention in the past few years [7, 11, 13, 14,
16, 17]. Williford [23] has also published a list of feasible parameters for certain types of
Q-polynomial association schemes with few classes.

2 The sage-drg package

As the name suggests, the sage-drg package [21] has been developed by the author
to support his research in distance-regular graphs. Recently, the functionality of the
package has been extended to support general association schemes. It is written as an
extension for the SageMath computer algebra system [19], which is free open-source
software written in the Python programming language [18], with many functionalities
deriving from other free open-source software, such as Maxima [15], which is used for
symbolic computation, or the GLPK [12] and CBC [9] linear programming solvers. The
sage-drg package is thus also free open-source software available under the MIT license,
written in the Python programming language, making use of the SageMath library.

Once the package is installed and loaded into SageMath, the DRGParameters class can
be used to represent parameter sets of distance-regular graphs. To instantiate such an
object, an intersection array can be passed to its constructor in the form of two lists or
tuples of the same length.

sage: from drg import DRGParameters
sage: syl = DRGParameters([5, 4, 2], [1, 1, 4])
sage: syl
Parameters of a distance−regular graph with intersection array
{5, 4, 2; 1, 1, 4}

For parameter sets of Q-polynomial association schemes, the QPolyParameters class
can be used to instantiate objects from Krein arrays.
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sage: from drg import QPolyParameters
sage: m11 = QPolyParameters([10, 242/27, 11/5], [1, 55/27, 44/5])
sage: m11
Parameters of a Q−polynomial association scheme with Krein array
{10, 242/27, 11/5; 1, 55/27, 44/5}

Given these arrays, the remaining parameters can be computed.

sage: syl.pTable()
0: [ 1 0 0 0] 1: [0 1 0 0]

[ 0 5 0 0] [1 0 4 0]

[ 0 0 20 0] [0 4 8 8]

[ 0 0 0 10] [0 0 8 2]

2: [ 0 0 1 0] 3: [ 0 0 0 1]

[ 0 1 2 2] [ 0 0 4 1]

[ 1 2 11 6] [ 0 4 12 4]

[ 0 2 6 2] [ 1 1 4 4]

sage: syl.kreinParameters()
0: [ 1 0 0 0] 1: [ 0 1 0 0]

[ 0 16 0 0] [ 1 44/5 22/5 9/5]

[ 0 0 10 0] [ 0 22/5 2 18/5]

[ 0 0 0 9] [ 0 9/5 18/5 18/5]

2: [ 0 0 1 0] 3: [ 0 0 0 1]

[ 0 176/25 16/5 144/25] [ 0 16/5 32/5 32/5]

[ 1 16/5 4 9/5] [ 0 32/5 2 8/5]

[ 0 144/25 9/5 36/25] [ 1 32/5 8/5 0]

The package also supports variables in the parameters.

sage: r = var("r")
sage: f = DRGParameters([2∗r^2∗(2∗r+1), (2∗r−1)∗(2∗r^2+r+1), 2∗r^2],

[1, 2∗r^2, r∗(4∗r^2−1)])
sage: f1 = f.subs(r == 1)
sage: f1
Parameters of a distance−regular graph with intersection array
{6, 4, 2; 1, 2, 3}

sage: f2 = f.subs(r == 2)
sage: f2
Parameters of a distance−regular graph with intersection array
{40, 33, 8; 1, 8, 30}
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The parameter sets can be checked for feasibility. Note that many more feasibil-
ity conditions are known for P-polynomial schemes than for general or Q-polynomial
schemes.

sage: f1.check_feasible() # no error, parameter set is feasible
sage: f2.check_feasible()
...

InfeasibleError: nonexistence by JurišićVidali12

A more detailed description of the usage of the package is given in [20].

3 Nonexistence results

The package can also be used to compute triple intersection numbers of an association
scheme, i.e., counts of vertices in given relations to a chosen triple of vertices. Unlike
the intersection numbers, which are constants with regard to the choice of two vertices
in a given relation and the relations to each of them, triple intersection numbers may
depend on the particular choice of the triple and not only the relations between them.
Still, in some cases, equations can be obtained from the Krein condition [5] which limit
the possible values of triple intersection numbers, sometimes down to a manageable
number of solutions.

In the paper introducing the package [22], the author has used it to compute triple in-
tersection numbers for a family of feasible intersection arrays of distance-regular graphs
and three more sporadic cases, each time obtaining a contradiction, thus concluding the
nonexistence of the corresponding graphs. In a subsequent collaboration with Gavrilyuk
and Suda [10], the same technique has been used to show nonexistence for a family of
feasible Krein arrays of Q-polynomial association schemes derived from a class of pu-
tative tight 4-designs, thus also showing their nonexistence and closing a long-standing
problem in design theory.

Gavrilyuk and the author have also used the package to show nonexistence of many
feasible examples of Q-polynomial association schemes appearing in the tables by Willi-
ford [23] (paper still in preparation). Although it was enough, in most cases, to observe
that there are no solutions for triple intersection numbers corresponding to a particular
triple of vertices, a few cases required further checks which showed that the obtained
solutions were inconsistent, and thus corresponding association schemes cannot exist.
Integer linear programming facilities provided by SageMath have been employed to ef-
ficiently generate the needed solutions to either derive a contradiction or arrive to a set
of solutions which are consistent with each other.

To obtain the above results, the newly added features of sage-drg have been used
extensively. More than 2000 lines of code (nearly half of the existing codebase) have
been written or rewritten to support general association schemes (and, in particular,
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Q-polynomial association schemes) and to implement a generator of integral solutions
of systems of linear inequalities, which was used to search for contradictions as de-
scribed above. Altogether, the results imply nonexistence for 133 sets of parameters of
association schemes listed in tables of feasible parameters, and four infinite families of
parameter sets.
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