
Séminaire Lotharingien de Combinatoire 82B (2019) Proceedings of the 31st Conference on Formal Power
Article #100, 6 pp. Series and Algebraic Combinatorics (Ljubljana)

Supporting Data-Driven Mathematics:
Database and Interface Generation

Katja Berčič∗

Department of Computer Science, FAU Erlangen-Nürnberg, Germany

Abstract. Easier access to computation is turning mathematics into an at least a par-
tially data-driven discipline. But it does not use the tools of the data trade: a majority
of datasets are still shared in an ad hoc manner. We contribute an automated database
setup process which builds a complete website stack, from the database schema to a
web interface, from a dataset declaration.

Keywords: mathematical data, database framework, schema declaration

1 Introduction

Generating data is becoming more and more common in mathematics, but there are no
easy ways to store and share it. In particular, providing a user-friendly interface to a
dataset typically represents a non-trivial investment of resources for an author. Many
datasets, especially the smaller ones, end up stored and shared in an ad hoc manner.
Text files with one entry per line or code that produces an array of objects for a computer
algebra system (and similar) are not uncommon.

Related Work The work in progress living survey of mathematical databases [2] is
an indication of the status of data in mathematics. It currently lists about a hundred
datasets in roughly 50 table entries. The OEIS is the oldest mathematical database, and
arguably the most influential one. The LMFDB covers a wider scope and collects several
datasets related via Langland’s program [5]. The OEIS and the LMFDB both have a
substantial mathematical knowledge management architecture, as do some other larger
database projects. Several datasets have also been integrated with computer algebra
systems such as GAP, Magma or SageMath. Both of these options are out of reach for
smaller collaborations.

Some projects, like the LMFDB and the House of Graphs, accept dataset submissions.
However, they are all limited to a specific area of mathematics, and the authors need to
be registered users. Generic research data hosting services are not extensively used by
mathematicians, likely due to the combination of the lack of awareness of them and the

∗katja.bercic@fau.de The author was supported by EU grant Horizon 2020 ERI 676541 OpenDreamKit

mailto:katja.bercic@fau.de

2 Katja Berčič

M Tr(M) Orthogonal σM det(λI −M)(
2 0
0 1

)
3 yes 2, 1 λ2 − 3λ + 2(

2 1
1 2

)
4 no 3, 1 λ2 − 4λ + 3(−1 0

0 1

)
0 yes 1, −1 λ2 − 1

Table 1: Running example: Mathilde’s matrix dataset

lack of added value they provide. Some such are the EU infrastructures EUDAT and
EOSC, RADAR, and hosting provided by publishers. Tools for managing and browsing
general databases are similarly unused. They tend to be rich in features that are not
useful from the perspective of mathematical datasets and have an initially steep learning
curve. Somewhat more surprising is that even simpler database tools, e.g. those based
on the light-weight SQLite database, appear to not be used much or at all.

The framework presented in this abstract is called MBGen [7] and it builds on two
projects. The concepts of mathematical schemata and codecs were developed during the
OpenDreamKit project [10]. The interface that is produced is essentially an instance of
a DiscreteZOO website [6], which is a part of a larger project that also includes a data
repository and a SageMath package. The DiscreteZOO project [4] was developed for the
use case of collections of graphs with a high degree of symmetry, but was designed to
be useful in a more general setting.

Contribution We automate the process of setting up a database with a web interface
for mathematical datasets. MBGen takes a dataset declaration as input and generates a
complete website stack, from the database schema to a web interface. The contribution
is twofold and in the original spirit of DiscreteZOO. Authors of mathematical datasets
will benefit from an automated process of database setup. In turn, this should lead to
more datasets being available with a GUI and easy to use search features, which will
benefit the researchers (data consumers and users). A standardized interface can also
form a basis for cross-database sharing and linking in the future. In most cases, even a
simple software stack would be a great improvement over the form a dataset is currently
shared as.

Running example The dataset shown in Table 1 is simple on purpose and we will
use it to demonstrate the workings of MBGen. Mathilde has collected a set of integer
matrices and computed their trace, eigenvalues, whether they are orthogonal, and their
characteristic polynomial. She wants to publish the dataset on her website.

Supporting Data-Driven Mathematics 3

2 The MBGen Framework

MBGen [7] works for datasets that fit the following simple mold. First, the dataset is
composed of some number of lists of mathematical objects of the same type. Second, for
every type, the list consists of either simple objects or of object records. These records
could contain information about a set of mathematical properties or invariants, pro-
vided they can be reasonably represented in a database. The set of supported types is
extensible and currently contains some basic types (Booleans and integers) as well as
some more complex types for demonstration. An up-to-date description of the system,
including the setup and a list of supported types is available in the project readme.

Writing a Dataset Declaration The schema declaration is written in the Mathematical
Data Declaration Language (MDDL) and is essentially a list of declarations c : A, where
c is a name of a property and A is its type. Every declaration also needs a codec, which
is simply a pair of mappings (an encoding and a decoding) between a mathematical
type and a database type. MDDL and its underlying infrastructure were introduced and
described in [3]. For the purpose of this abstract, we only demonstrate how MDDL can
be used through examples, and briefly describe codecs in the following paragraph.

Codecs are an essential part of the system that handles the communication between
the mathematical level and the database level. They enable interoperability, which hap-
pens at the mathematical level, and connect it with the storage at the database level. Note
that codecs can be arbitrary code and arbitrarily complex: consider the example Brendan
McKay’s graph formats [8], which are widely used to represent graphs as strings. These
formats are typically used in combination with canonical labelings [1] to ensure that two
graphs with the same encoding are necessarily also isomorphic.

To set up her project, Mathilde follows the steps described on the project page [7].
Once she is ready, she starts writing her schema declaration. First, she just writes down
an empty theory called Matrices (Listing 1). Next, she will write property declarations
for each of the columns in her dataset, as in Listing 2.

Listing 1: The empty theory
namespace http://data.mathhub.info/schemas||||||||
theory Matrices : ?MDDL =
||||||||

Listing 2: A property declaration
property : propertyMathType ||

meta ?Codecs?codec propertyCodec ||
propertyTags ||||

She only needs to use types that are already supported, and for which codecs have
already been defined. In addition to the required information about the mathematical
type and the codecs, Mathilde can use the optional tags (Table 2) to specify the interface
behaviour.

The tag hidden can be used when a dataset has many columns (like the graph datasets
in DiscreteZOO [6]). If there are hidden columns, the interface shows an additional
widget, which lets a visitor choose which columns they want to see. If the tag display

4 Katja Berčič

Database index Column representing a dataset index

Frontend collection Collection metadata, e.g. provenance data
display Display name in the list of filters and in the results table head.
hidden By default, hide in the results display.
opaque Do not use for filtering.

Table 2: Metadata tags

is not present, the column name is used for display. The tags particularly relevant for
the interface the metadata tags and the tags hidden and opaque.

Now, Mathilde can write down her dataset declaration (Listing 3).

Listing 3: Mathilde’s dataset declaration
theory Matrices : ?MDDL =
meta /schemas?MDDL?datasetName "Mathilde’s matrix dataset" ||||

mat: matrix Z 2 2 ||meta ?Codecs?codec MatrixAsArray IntIdent ||
tag ?MDDL?opaque ||||

trace : Z ||meta ?Codecs?codec IntIdent ||||
orthogonal: bool || meta ?Codecs?codec BoolIdent ||||
eigenvalues : list Z ||meta ?Codecs?codec ListAsArray IntIdent ||

tag ?MDDL?opaque ||||
characteristic : Polynomial IntegerRing || meta ?Codecs?codec PolynomialAsSparseArray IntIdent ||

tag ?MDDL?opaque ||||
||||||||

Generating and Populating the Database For every
schema theory T, MBGen generates an SQL table. The
table name is the theory name and for each declaration
c : A in T, it generates a column, whose type is obtained
from the codec declaration. In addition to these, MBGen
generates a primary key column called ID of type UUID.
When Mathilde runs MBGen on her schema theory from
Listing 3, she obtains the database schema on the right.

Listing 4: Schema
Column | Type

----------------+----------
ID | uuid
MAT | integer []
TRACE | integer
ORTHOGONAL | boolean
EIGENVALUES | integer []
CHARACTERISTIC | integer []

Indexes: "Matrices_pkey"
PRIMARY KEY , btree ("ID")

If the dataset has a pre-existing ID-like field, which is not a UUID, the corresponding
column should be tagged with index. She can insert her data using the corresponding
SQL INSERT statements, see Listing 5.

Listing 5: Table contents after insert
ID | MAT | TRACE | ORTHOGONAL | EIGENVALUES | CHARACTERISTIC

-------------------+------------+-------+------------+-------------+----------------
e278b5e8 -4404 -... | {2,0,0,1} | 3 | t | {2,1} | {0,2,1,-3,2,1}
05a30ff0 -4405 -... | {2,1,1,2} | 4 | f | {3,1} | {0,3,1,-4,2,1}
1be3f022 -4405 -... | {-1,0,0,1} | 0 | t | {1,-1} | {0,-1,2,1}

Supporting Data-Driven Mathematics 5

Figure 1: Screenshot of the website for Mathilde’s use dataset

Extensions and Customisation Mathilde can modify the code and the database after
they are generated and before running or deploying the website. We use the project
wiki [7] to document how such modifications can be made.

3 Conclusion and Future Work

To evaluate the MathDataHub setup, we ran MBGen for the datasets hosted on the Dis-
creteZOO website. In some sense, the DiscreteZOO datasets are simpler than Mathilde’s
much smaller dataset, since they only contain Boolean and integer valued properties,
while the objects (graphs) are string-encoded. An author of a similarly uncomplicated
dataset with no new codecs could start from an existing dataset declaration and adapt it
to their needs in under an hour.

MBGen will be used as a critical first step in MathDataHub, a work in progress project
that has as its goal a unified mathematical data infrastructure, which will likely include
hosting options. As a part of that, we will continue to expand the core library of codecs
and support for common data types. Similarly, we intend to make it easier to add
additional (custom) filters with future versions. We will use [9] as a starting point to
explore possibilities for the development of mathematical query languages. Finally, we
aim to provide an API that would be suitable for providing access from computational
software such as SageMath or GAP.

Acknowledgements

The author gratefully acknowledges Dennis Müller and Tom Wiesing’s help in getting to

6 Katja Berčič

grips with Mmt, as well as Tom Wiesing’s invaluable help in setting up the harmonious
running of the various parts of the framework. The author would also like to thank
Michael Kohlhase for several constructive discussions which were instrumental in setting
the direction of the project and placing it into the larger setting. The author is supported
by the EU grant Horizon 2020 ERI 676541 OpenDreamKit.

References

[1] L. Babai and E. M. Luks. “Canonical Labeling of Graphs”. Proceedings of the Fifteenth An-
nual ACM Symposium on Theory of Computing. STOC ’83. ACM, New York, NY, USA, 1983,
pp. 171–183. Link.

[2] K. Berčič. Math Databases Living Survey. Link (visited on 03/19/2019).

[3] K. Berčič, M. Kohlhase, and F. Rabe. “Towards a Unified Mathematical Data Infrastructure:
Database and Interface Generation”. Intelligent Computer Mathematics. Conferences on In-
telligent Computer Mathematics. Ed. by C. Kaliszyck, E. Brady, C. Sacerdoti-Coen, and A.
Kohlhase. In preparation. 2019. Link.

[4] K. Berčič and J. Vidali. “DiscreteZOO: a Fingerprint Database of Discrete Objects”. 2018.
Link.

[5] S. Bernstein Joseph Gelbart, ed. An Introduction to the Langlands Program. Birkhäuser, 2003.

[6] DiscreteZOO website. Link (visited on 03/19/2019).

[7] MBGen description, links demos and code repositories. Link (visited on 03/19/2019).

[8] B. McKay. “Description of graph6, sparse6 and digraph6 encodings”. Link.

[9] F. Rabe. “A Query Language for Formal Mathematical Libraries”. Intelligent Computer Math-
ematics. Springer Berlin Heidelberg, 2012, pp. 143–158. arXiv:1204.4685.

[10] T. Wiesing, M. Kohlhase, and F. Rabe. “Virtual Theories – A Uniform Interface to Mathe-
matical Knowledge Bases”. Mathematical Aspects of Computer and Information Sciences. Lec-
ture Notes in Computer Science 10693. Springer, Cham, 2017, pp. 243–257. Link.

http://dx.doi.org/10.1145/800061.808746
https://mathdb.mathhub.info/
https://kwarc.info/kohlhase/submit/cicm19-MDH.pdf
https://arxiv.org/pdf/1812.05921.pdf
https://discretezoo.xyz/
https://github.com/MathHubInfo/Documentation/wiki/MBGen
http://users.cecs.anu.edu.au/~bdm/data/formats.txt
https://arxiv.org/abs/1204.4685
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-vt/crc.pdf

	Introduction
	The MBGen Framework
	Conclusion and Future Work

