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Abstract. We recently generalised the lattice permutation condition for Young table-
aux to Kronecker tableaux and hence calculate a large new class of stable Kronecker
coefficients labelled by co-Pieri triples. In this extended abstract we discuss important
families of co-Pieri triples for which our combinatorics simplifies drastically.
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1 Introduction

Perhaps the last major open problem in the complex representation theory of symmetric
groups is to describe the decomposition of a tensor product of two simple representa-
tions. The coefficients describing the decomposition of these tensor products are known
as the Kronecker coefficients and they have been described as ‘perhaps the most challeng-
ing, deep and mysterious objects in algebraic combinatorics’. Much recent progress has
focused on the stability properties enjoyed by Kronecker coefficients.

Whilst a complete understanding of the Kronecker coefficients seems out of reach,
the purpose of this work is to attempt to understand the stable Kronecker coefficients
in terms of oscillating tableaux. Oscillating tableaux hold a distinguished position in
the study of tensor product decompositions [4, 10, 11] but surprisingly they have never
before been used to calculate Kronecker coefficients of symmetric groups. In this work,
we see that the oscillating tableaux defined as paths on the graph given in Figure 1
(which we call Kronecker tableaux) provide bases of certain modules for the partition
algebra, Ps(n), which is closely related to the symmetric group. We hence add a new
level of structure to the classical picture — this extra structure is the key to our main
result: the co-Pieri rule for stable Kronecker coefficients.

A momentary glance at the graph given in Figure 1 reveals a very familiar subgraph:
namely Young’s graph (with each level doubled up). The stable Kronecker coefficients
labelled by triples from this subgraph are well-understood — the values of these coef-
ficients can be calculated via a tableaux counting algorithm known as the Littlewood–
Richardson rule [6]. This rule has long served as the hallmark for our understanding of
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Figure 1: The first three layers of the branching graph Y

Kronecker coefficients. The Littlewood–Richardson rule was discovered as a rule of two
halves (as we explain below). In [1] we succeed in generalising one half of this rule to
all Kronecker tableaux, and thus solve one half of the stable Kronecker problem. Our
main result unifies and vastly generalises the work of Littlewood–Richardson [6] and
many other authors [2, 3, 7, 8, 9]. Most promisingly, our result counts explicit homo-
morphisms and thus works on a structural level above any description of a family of
Kronecker coefficients since those first considered by Littlewood–Richardson [6].

In more detail, given a triple of partitions (λ, ν, µ) and with |µ| = s, we have an
associated skew Ps(n)-module spanned by the Kronecker tableaux from λ to ν of length
s, which we denote by ∆s(ν \ λ). For λ = ∅ and n ≥ 2s these modules provide a
complete set of non-isomorphic Ps(n)-modules (and we drop the partition ∅ from the
notation). The stable Kronecker coefficients are then interpreted as the dimensions,

g(λ, ν, µ) = dimQ(HomPs(n)(∆s(µ), ∆s(ν \ λ))) (†)

for n ≥ 2s. Restricting to the Young subgraph, or equivalently to a triple (λ, ν, µ) of
so-called maximal depth such that |λ|+ |µ| = |ν|, these modules specialise to the usual
simple and skew modules for symmetric groups; hence the multiplicities g(λ, ν, µ) are
the Littlewood–Richardson coefficients. We hence recover the well-known fact that the
Littlewood–Richardson coefficients appear as the subfamily of stable Kronecker coeffi-
cients labelled by triples of maximal depth. The tableaux counted by the Littlewood–
Richardson rule satisfy 2 conditions: the semistandard and lattice permutation conditions.
In [1] we generalise the lattice permutation condition to Kronecker tableaux.
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Theorem ([1, Main Theorem]). Let (λ, ν, µ) be a co-Pieri triple or a triple of maximal depth.
Then the stable Kronecker coefficient g(λ, ν, µ) is given by the number of semistandard Kronecker
tableaux of shape ν \ λ and weight µ whose reverse reading word is a lattice permutation.

The observant reader will notice that the statement above describes the Littlewood–
Richardson coefficients uniformly as part of a far broader family of stable Kronecker
coefficients (and is the first result in the literature to do so). Whilst the classical Pieri rule
(describing the semistandardness condition for Littlewood–Richardson tableaux) is ele-
mentary, it served as a first step towards understanding the full Littlewood–Richardson
rule; indeed Knutson–Tao–Woodward have shown that the Littlewood–Richardson rule
follows from the Pieri rule by associativity [5]. We hope that our generalisation of the co-
Pieri rule (the lattice permutation condition for Kronecker tableaux) will prove equally
useful in the study of stable Kronecker coefficients.

Special cases of co-Pieri triples. The definition of co-Pieri triples is given in [1, Theorem
4.12] and can appear quite technical at first reading; we present a few special cases here.

(i) λ and µ are one-row partitions and µ is arbitrary. This family has been extensively
studied over the past thirty years and there are many distinct combinatorial descrip-
tions of some or all of these coefficients [2, 3, 7, 8, 9], none of which generalises.

(ii) the two skew partitions λ	 (λ ∩ ν) and ν	 (λ ∩ ν) have no two boxes in the same
column and |µ| = max{|λ 	 (λ ∩ ν)|, |ν 	 (λ ∩ ν)|}. It is easy to see that if, in
addition, (λ, ν, µ) is a triple of maximal depth, then this case specialises to the
classical co-Pieri triples.

(iii) λ = ν = (dl, d(l − 1), . . . , 2d, d) for any l, d ≥ 1 and |µ| ≤ d.

In this extended abstract we have chosen to focus primarily on case (i) as these triples
carry many of the tropes of general co-Pieri triples (but with significant simplifications
which serve to make this abstract more approachable) and because case (i) should be
familiar to many readers due to its many appearances in the literature.

2 The partition algebra and Kronecker tableaux

The combinatorics underlying the representation theory of the partition algebras and
symmetric groups is based on partitions. A partition λ of n, denoted λ ` n, is defined
to be a sequence of weakly decreasing non-negative integers which sum to n. We let
∅ denote the unique partition of 0. Given a partition, λ = (λ1, λ2, . . . ), the associated
Young diagram is the set of nodes [λ] =

{
(i, j) ∈ Z2

>0 | j ≤ λi
}

. We define the length,
`(λ), of a partition λ, to be the number of non-zero parts. Given λ = (λ1, λ2, . . . , λ`) a
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partition and n an integer, define λ[n] = (n− |λ|, λ1, λ2, . . . , λ`). Given λ[n] a partition of
n, we say that the partition has depth equal to |λ|.

The partition algebra is generated as an algebra by the elements sk,k+1, pk+1/2 (1 ≤
k ≤ r − 1) and pk (1 ≤ k ≤ r) pictured below modulo a long list of relations. One can
visualise any product in this algebra as simply being given by concatenation of diagrams,
modulo some surgery to remove closed loops [1].

sk,k+1 =

k

k

pk+1/2 =

k

k

pk =

k

k

Define the branching graph Y as follows. For k ∈ Z≥0, we denote by P≤k the set of
partitions of degree less or equal to k. Now the set of vertices on the kth and (k + 1/2)th
levels of Y are given by

Yk = {(λ, k− |λ|) | λ ∈P≤k} Yk+1/2 = {(λ, k− |λ|) | λ ∈P≤k}.

The edges of Y are as follows,

• for (λ, l) ∈ Yk and (µ, m) ∈ Yk+1/2 there is an edge (λ, l) → (µ, m) if µ = λ, or if µ is
obtained from λ by removing a box in the ith row for some i ≥ 1; we write µ = λ− ε0
or µ = λ− εi, respectively.

• for (λ, l) ∈ Yk+1/2 and (µ, m) ∈ Yk+1 there is an edge (λ, l) → (µ, m) if µ = λ, or if µ

is obtained from λ by adding a box in the ith row for some i ≥ 1; we write µ = λ + ε0
or µ = λ + εi, respectively.

When it is convenient, we decorate each edge with the index of the node that is added
or removed when reading down the diagram. The first few levels of Y are given in
Figure 1. When no confusion is possible, we identify (λ, l) ∈ Yk with the partition λ.

Definition 1. Given λ ∈ Pr−s ⊆ Yr−s and ν ∈ P≤r ⊆ Yr, we define a standard Kronecker
tableau of shape ν \ λ and degree s to be a path t of the form

λ = t(0)→ t(1
2)→ t(1)→ · · · → t(s− 1

2)→ t(s) = ν, (2.1)

in other words t is a path in Y which begins at λ and terminates at ν. We let Stds(ν \ λ) denote
the set of all such paths. If λ = ∅ ∈ Y0 then we write Stdr(ν) instead of Stdr(ν \∅). Given s, t
two standard Kronecker tableaux of degree s, we write s D t if s(k) D t(k) for all 0 ≤ k ≤ s.

We can think of a path as either the sequence of partitions or the sequence of boxes
removed and added. We usually prefer the latter case and record these boxes removed
and added pairwise. For a pair (−εp,+εq) we call this an add or remove step if p = 0 or
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q = 0 respectively (because the effect of this step is to add or remove a box) and we call
this a dummy step if p = q (as we end up at the same partition as we started); we write
a(q) or r(p) for an add or remove step and d(p) for a dummy step. Many examples are
given below, in particular the reader should compare the paths of Example 3 with those
depicted in the central diagram in Figure 2. We let tλ denote the most dominant element
of Stds(λ), namely that of the form:

d(0) ◦ d(0) ◦ · · · ◦ d(0)︸ ︷︷ ︸
r−|λ|

◦ a(1) ◦ · · · ◦ a(1)︸ ︷︷ ︸
λ1

◦ a(2) ◦ · · · ◦ a(2)︸ ︷︷ ︸
λ2

◦ · · ·

Given λ ∈Pr−s ⊆ Yr−s and ν ∈P≤r ⊆ Yr, define the skew cell module

∆s(ν \ λ) = Span{tλ ◦ s | s ∈ Stds(ν \ λ)}

with the action of Ps(n) ↪→ Pr−s(n)⊗ Ps(n) ↪→ Pr(n) given as in [1, Section 2.3]. If λ = ∅,
then we simply denote this module by ∆s(ν). Let λ ∈Pr−s, µ ∈Ps and ν ∈P≤r. Then
we are able to define the stable Kronecker coefficients (even if this is not their usual
definition) to be the multiplicities

g(λ, ν, µ) = dimQ(HomPs(n)(∆s(µ), ∆s(ν \ λ)))

for all n ≥ 2s. When s = |ν| − |λ|, the (skew) cell modules for partition algebras spe-
cialise to the usual Specht modules of the symmetric groups and we hence easily see that
these stable coefficients coincide with the classical Littlewood–Richardson coefficients.

3 The action of the partition algebra

Understanding the action of the partition algebra on skew modules is difficult in general.
In this section, we show that this can be done to some extent in the cases of interest to
us. We have assumed that |µ| = s, therefore the ideal Ps(n)prPs(n) ⊂ Ps(n) annihilates
∆s(µ) and this motivates the following definition.

Definition 2. We define the Dvir radical of the skew module ∆s(ν \ λ) by

DRs(ν \ λ) = ∆s(ν \ λ)Ps(n)prPs(n) ⊆ ∆s(ν \ λ)

and set
∆0

s (ν \ λ) = ∆s(ν \ λ)/DRs(ν \ λ).

If s = |ν| − |λ|, then set Std0
s (ν \ λ) = Stds(ν \ λ). If λ and ν are one-row partitions, then set

Std0
s (ν \ λ) ⊆ Stds(ν \ λ) to be the subset of paths, s, whose steps are of the form

r(1) = (−1,+0) d(1) = (−1,+1) a(1) = (−0,+1)

and such that the total number of boxes removed in s is less than or equal to |λ|.
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Fix t ∈ Stdr(ν) and 1 ≤ k ≤ r and suppose that

t(k− 1) −t−→ t(k− 1
2)

+u−→ t(k + 1) −v−→ t(k + 1
2)

+w−−→ t(k + 1).

We define tk↔k+1 ∈ Stdr(ν) to be the tableau, if it exists, determined by tk↔k+1(l) = t(l)
for l 6= k, k± 1

2 and

tk↔k+1(k− 1) −v−→ tk↔k+1(k− 1
2)

+w−−→ tk↔k+1(k)
−t−→ tk↔k+1(k + 1

2)
+u−→ tk↔k+1(k + 1).

Let (λ, ν, s) be such that s = |ν| − |λ|, or λ and ν are both one-row partitions, then
∆0

s (ν \ λ) is free as a Z-module with basis

{t | t ∈ Std0
s (ν \ λ)}

and the Ps(n)-action on ∆0
s (ν \ λ) is as follows:

(t + DRs(˚ \ ˘))sk,k+1 =

{
tk↔k+1 + DRs(˚ \ ˘) if tk↔k+1 exists
−t + ∑s�t rsts + DRs(˚ \ ˘) otherwise

(3.1)

for 1 ≤ k < s and (t + DRs(˚ \ ˘))pk,k+1 = 0 and (t + DRs(˚ \ ˘))pk = 0 for 1 ≤ k ≤ s.
The coefficients rst ∈ Q are given in [1, Theorem 2.9].

Example 3. The set Std0
3((4) \ (4)) consists of the 7 oscillating tableaux

s1 = r(1) ◦ d(1) ◦ a(1) s2 = d(1) ◦ r(1) ◦ a(1) s3 = r(1) ◦ a(1) ◦ d(1)
s4 = a(1) ◦ r(1) ◦ d(1) s5 = d(1) ◦ a(1) ◦ r(1) s6 = a(1) ◦ d(1) ◦ r(1)

s7 = d(1) ◦ d(1) ◦ d(1)

We have that

s1,2 =



· 1 · · · · ·
1 · · · · · ·
· · · 1 · · ·
· · 1 · · · ·
· · · · · 1 ·
· · · · 1 · ·
· · · · · · 1


s2,3 =



· · 1 · · · ·
· · · · 1 · ·
1 · · · · · ·
· · · · · 1 ·
· 1 · · · · ·
· · · 1 · · ·
· · · · · · 1


It is not difficult to see that this module decomposes as follows

∆0
3((4) \ (4)) = 2∆0

3((3))⊕ 2∆0
3((2, 1))⊕ ∆0

3((1
3)).
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4 Semistandard Kronecker tableaux

For any (λ, ν, s) ∈Pr−s ×P≤r ×Z>0 and any µ ` s we have

g(λ, ν, µ) = dimQ HomPs(n)(∆s(µ), ∆0
s (ν \ λ)) = dimQ HomQSs(S(µ), ∆0

s (ν \ λ)),

where QSs is viewed as the quotient of Ps(n) by the ideal generated by pr. Now for each
µ = (µ1, µ2, . . . , µl) ` s we have an associated Young permutation module M(µ) = Q⊗Sµ

QSs where Sµ = Sµ1 ×Sµ2 × · · · ×Sµl ⊆ Ss. As a first step towards understanding
the stable Kronecker coefficients, it is natural to consider

dimQ HomSs(M(µ), ∆0
s (ν \ λ))

and to attempt to construct a basis in terms of semistandard (Kronecker) tableaux.

Definition 4. Let (λ, ν, s) ∈ Pr−s ×P≤r ×N be a pair of one-row partitions or a triple of
maximal depth. Let µ = (µ1, µ2, . . . , µl) ` s and let s, t ∈ Std0

s (ν \ λ).

1. For 1 ≤ k < s we write s k∼ t if s = tk↔k+1.

2. We write s
µ∼ t if there exists a sequence of standard Kronecker tableaux t1, t2, . . . , td ∈

Std0
s (ν \ λ) such that

s = t1
k1∼ t2, t2

k2∼ t3, . . . , td−1
kd−1∼ td = t

for some k1, . . . , kd−1 ∈ {1, . . . , s − 1} \ {[µ]c | c = 1, . . . , l − 1}. We define a tableau
of weight µ to be an equivalence class of tableaux under

µ∼, denoted [t]µ = {s ∈ Std0
s (ν \

λ) | s µ∼ t}.

3. We say that a Kronecker tableau, [t]µ, of shape ν \ λ and weight µ is semistandard if for any
s ∈ [t]µ and any k 6∈ {[µc] | c = 1, . . . , l − 1} the tableau sk↔k+1 exists. Let SStd0

s (ν \ λ, µ)
denote the set of semistandard Kronecker tableaux of shape ν \ λ and weight µ.

To represent these semistandard Kronecker tableaux graphically, we will add ‘frames’
corresponding to the composition µ on the set of paths Std0

s (ν \ λ) in Y . For t =
(−εi1 ,+ε j1 , . . . ,−εis ,+ε js) we say that the integral step (−εik ,+ε jk) belongs to the cth

frame if [µ]c−1 < k ≤ [µ]c. Thus for s, t ∈ Std0
s (ν \ λ) we have that s

µ∼ t if and only if s
is obtained from t by permuting integral steps within each frame (as in Figure 2).

Theorem 5. Let (λ, ν, s) be a co-Pieri triple and µ ` s. We define ϕT(tµ) = ∑s∈T s for T ∈
SStd0

s (ν \ λ, µ). Then HomSs(M(µ), ∆0
s (ν \ λ)) has Z-basis {ϕT | T ∈ SStd0

s (ν \ λ, µ)}.

Example 6. Let λ = (4), ν = (4) and s = 5 and µ = (2, 2, 1) ` 5. An example of a
semistandard tableau, V, of shape ν \ λ and weight µ is given by the rightmost diagram in
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Figure 2. The semistandard tableau V is an orbit consisting of the following four standard
tableaux

v1 = r(1) ◦ d(1) ◦ d(1) ◦ a(1) ◦ a(1) v2 = d(1) ◦ r(1) ◦ d(1) ◦ a(1) ◦ a(1)
v3 = r(1) ◦ d(1) ◦ a(1) ◦ d(1) ◦ a(1) v4 = d(1) ◦ r(1) ◦ a(1) ◦ d(1) ◦ a(1)

We have a corresponding homomorphism ϕV ∈ HomSs(M(2, 2, 1), ∆s((4) \ (4)) given by

ϕT(t(2,2,1)) = v1 + v2 + v3 + v4.

1st frame
2 steps in

2nd frame
2 steps in

3rd frame
1 step in

−0

+2+1

−0 −0

+2 +1

−0

+3+2

−0 −0

+3 +2

−0

+3

−1

+1+0

−1 −1

+1 +0

−1 −0

+1+1

−0 −1

+1

−0

+1

−1 −4

+0+0

−4 −1

+0 +0

−1 −2

+3+0

−2 −1

+3 +0

−2

+3

Figure 2: Three examples of semistandard Kronecker tableaux of weight µ = (2, 2, 1).
The number of steps in the ith frame is µi. The first is a triple of maximal depth, the
latter two are co-Pieri triples. Compare the leftmost picture with Example 7 below.

4.1 The classical picture for semistandard Young tableaux

We now wish to illustrate how our Definition 4 and the familiar visualisation of a semi-
standard Young tableaux coincide for triples of maximal depth. Given λ ` r− s, ν `
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r, µ = (µ1, µ2, . . . , µ`) ` s such that λ ⊆ ν a Young tableau of shape ν	 λ and weight µ

in the classical picture is visualised as a filling of the boxes of [ν	 λ] with the entries

1, . . . , 1︸ ︷︷ ︸
µ1

, 2, . . . , 2︸ ︷︷ ︸
µ2

, . . . , `, . . . , `︸ ︷︷ ︸
µ`

so that they are weakly increasing along the rows and columns. One should think of
this classical picture of a Young tableau of weight µ simply as a diagrammatic way of
encoding an Sµ-orbit of standard Young tableaux as follows. Let s be a standard Young
tableau of shape ν	 λ and let µ be a partition. Then define µ(s) to be the Young tableau
of weight µ obtained from s by replacing each of the entries [µ]c−1 < i ≤ [µ]c in s by the
entry c for c ≥ 1. We identify a Young tableau, S, of weight µ with the set of standard
Young tableaux, µ−1(S) = {s | µ(s) = S}.

In either picture, a Young tableau of weight µ is merely a picture which encodes an
Sµ-orbit of standard Young tableaux. We picture a Young tableau, S, of weight µ as the
orbit of paths µ−1(S) in the branching graph with a frame to record the partition µ.

A tableau of weight µ in the classical picture would be said to be semistandard if
and only if the entries are strictly increasing along the columns. In our picture, this is
equivalent to condition 3 of Definition 4.

Example 7. Let λ = (2, 1), ν = (3, 3, 2) and s = 5. Then (λ, ν, s) is a triple of maximal depth.
Take µ = (2, 2, 1) ` 5. The semistandard tableau U is an orbit consisting of the following four
standard tableaux

u1 = a(1) ◦ a(2) ◦ a(2) ◦ a(3) ◦ a(3) u2 = a(2) ◦ a(1) ◦ a(2) ◦ a(3) ◦ a(3)
u3 = a(1) ◦ a(2) ◦ a(3) ◦ a(2) ◦ a(3) u4 = a(2) ◦ a(1) ◦ a(3) ◦ a(2) ◦ a(3)

pictured as follows

µ−1

(
1

1 2
2 3

)
=

{
1

2 3
4 5

,
2

1 3
4 5

,
2

1 4
3 5

,
1

2 3
4 5

}
.

We have a corresponding homomorphism ϕU ∈ HomSs(M(2, 2, 1), ∆s((3, 3, 2) \ (2, 1)) given
by

ϕT(t(2,2,1)) = u1 + u2 + u3 + u4.

Compare this orbit sum over 4 tableaux with Figure 2 (left) and the statement of Theorem 5.

5 Latticed Kronecker tableaux

We now provide the main result of the paper, namely we combinatorially describe

g(λ, ν, µ) = dim HomSs(S(µ), ∆0
s (ν \ λ))
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for (λ, ν, µ) a triple of maximal depth or such that λ and ν are both one-row partitions.
One can think of a path t ∈ Stds(ν \ λ) as a sequence of partitions; or equivalently, as
the sequence of boxes added and removed. We shall refer to a pair of steps, (−εa,+εb),
between consecutive integral levels of the branching graph as an integral step in the
branching graph. We define types of integral step (move-up, dummy, move-down) in the
branching graph of Pr(n) and order them as follows,

move-up dummy move-down
(−εp,+εq) < (−εt,+εt) < (−εu,+εv)

for p > q and u < v; we refine this to a total order as follows,

(m↑) we order (−εp,+εq) < (−εp′ ,+εq′) if q < q′ or q = q′ and p > p′;

(d) we order (−εt,+εt) < (−εt′ ,+εt′) if t > t′;

(m↓) we order (−εu,+εv) < (−εu′ ,+εv′) if u > u′ or u = u′ and v < v′.

We sometimes let a(i) := m↓(0, i) (respectively r(i) := m↑(i, 0)) and think of this as
adding (respectively removing) a box. We start with any standard tableau s ∈ Std0

s (ν \ λ)
and any µ = (µ1, µ2, . . . , µl) ` s. Write

s = (−εi1 ,+ε j1 ,−εi2 ,+ε j2 , . . . ,−εis ,+ε js).

Recall from the previous section that, to each integral step (−εik ,+ε jk) in s, we associate
its frame c, that is the unique positive integer such that [µ]c−1 < k ≤ [µ]c.

Definition 8. We encode the integral steps of s and their frames in a 2× s array, denoted by
ωµ(s) (called the µ-reverse reading word of s) as follows. The first row of ωµ(s) contains all the
integral steps of s and the second row contains their corresponding frames. We order the columns
of ωµ(s) increasingly using the ordering on integral steps given in Definition 2.5. For two equal
integral steps we order the columns so that the frame numbers are weakly decreasing. Given
S ∈ SStd0

s (ν \ λ, µ), it is easy to see that ωµ(s) = ωµ(t) for any pair s, t ∈ S and so we define
the µ-reverse reading word, ω(S), of S in the obvious fashion. For S ∈ SStd0

s (ν \ λ, µ) we write

ω(S) = (ω1(S), ω2(S))

where ω1(S) (respectively ω2(S)) is the first (respectively second) row of ω(S). Note that ω2(S)
is a sequence of positive integers such that i appears precisely µi times, for i ≥ 1.

Example 9. For λ = (2, 1) and ν = (3, 3, 2), the steps taken in the semistandard tableau U on
the left of Figure 2 are

a(1), a(2), a(2), a(3), a(3).
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We record the steps according to the dominance ordering for the partition algebra (a(1) < a(2) <
a(3)) and refine this by recording the frame in which these steps occur backwards, as follows

ω(U) =

(
a(1) a(2) a(2) a(3) a(3)

1 2 1 3 2

)
.

For λ = (4) and ν = (5), the steps taken in the semistandard tableau V in Figure 2 (right) are

r(1), d(1), d(1), a(1), a(1).

We record the steps according to the dominance ordering for the partition algebra (r(1) < d(1) <
a(1)) and we refine this by recording the frame in which these steps occur backwards, as follows

ω(V) =

(
r(1) d(1) d(1) a(1) a(1)

1 2 1 3 2

)
and notice that ω2(U) = ω2(V). We leave it as an exercise for the reader to verify that the final
tableau depicted in Figure 2 has reading word(

r(4) r(1) r(1) m↓(2, 3) m↓(2, 3)
1 2 1 2 3

)
.

Theorem 10. For S ∈ SStd0
s (ν \ λ, µ) we say that its reverse reading word ω(S) is a lattice

permutation if ω2(S) is a string composed of positive integers, in which every prefix contains at
least as many positive integers i as integers i + 1 for i ≥ 1. We define Latt0

s (ν \ λ, µ) to be the
set of all S ∈ SStd0

s (ν \ λ, µ) such that ω(S) is a lattice permutation. For any co-Pieri triple
(λ, ν, s) and any µ ` s we have

g(λ, ν, µ) = dimQ HomSs(S(µ), ∆0
s (ν \ λ)) = |Latt0

s (ν \ λ, µ)|.

Example 11. For example, we have that

g((2, 1), (3, 3, 2), (2, 2, 1)) = 1 = g((4), (4), (2, 2, 1))

and that the corresponding homomorphisms are constructed in Examples 6 and 7. That these
semistandard tableaux satisfy the lattice permutation property is checked in Example 9. Verifying
that these are the only semistandard tableaux satisfying the lattice permutation property is left as
an exercise for the reader. Similarly, one can check that g((7, 5, 12), (6, 3, 3), (2, 2, 1)) = 1.

Remark 12. The (non-stable) Kronecker coefficients are also indexed by partitions. As we in-
crease the size of the first row of each of the indexing partitions of the Kronecker coefficients, we
obtain a weakly increasing sequence of coefficients; the limiting values of these sequences are the
stable Kronecker coefficients which have been the focus of this paper. The non-stable Kronecker
coefficients labelled by two 2-line partitions can be written as an alternating sum of at most 4
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stable Kronecker coefficients labelled by two 1-line partitions [1, Proposition 7.6]. (In fact, any
non-stable Kronecker coefficient can be written as an alternating sum of stable Kronecker coeffi-
cients.) This should be compared with the existing descriptions of Kronecker coefficients labelled
by two 2-line partitions [8, 9] which also involve alternating sums with at most 4 terms.

The advantages of our description are that (1) ours is the first description that generalises to
other stable Kronecker coefficients (and in particular the first description of any family of Kro-
necker coefficients subsuming the Littlewood–Richardson coefficients) and (2) it counts explicit
homomorphisms and therefore works on a higher structural level than all other descriptions of
stable Kronecker coefficients since those first considered by Littlewood and Richardson [6].
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