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Abstract. We study the cone of deformations of a Coxeter permutahedron. This family
contains polyhedral models for the Coxeter-theoretic analogs of compositions, graphs,
matroids, posets, and associahedra. Our description extends the known correspon-
dence between generalized permutahedra and submodular functions to any finite re-
flection group.

Resumen. Estudiamos el cono de deformaciones de un permutaedro de Coxeter. Esta
familia contiene modelos poliedrales para las composiciones, grafos, matroides, posets,
y asociaedros de tipo Coxeter. Nuestra descripción extiende la correspondencia entre
permutaedros generalizados y funciones submodulares a cualquier grupo de reflex-
iones finito.
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1 Introduction

The permutahedron Πn is the convex hull of the n! permutations of {1, . . . , n} in Rn.
This polytopal model for the symmetric group Sn appears in and informs numerous
combinatorial, algebraic, and geometric settings. There are two natural generalizations,
which we now discuss.
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1. Reflection groups: Instead of the group Sn, we may consider any finite reflection
group W with corresponding root system Φ ⊂ V. This group can similarly be modeled
by the Φ-permutahedron, which is the convex hull of the W-orbit of a generic point in
V. Most of the geometric and representation theoretic properties of the permutahedron
extend to this setting.

2. Deformations: We may deform the polytope by moving its faces while preserving
their directions. The resulting family of generalized permutahedra or polymatroids is special
enough to be amenable to combinatorial analysis, and it is flexible enough to include
useful geometric models of many combinatorial families of interest, such as partitions,
compositions, graphs, matroids, and posets.

The goal of this paper is to initiate a theory of deformations of Φ-permutahedra or Φ-
polymatroids generalizing these two directions simultaneously. This theory is motivated
by the field of Coxeter combinatorics, which recognizes that many classical combinatorial
constructions are intimately related to the symmetric group, and have natural general-
izations to the setting of reflection groups. There are natural Coxeter-theoretic analogs
of compositions, graphs, matroids, and posets, and we observe that they are all part of
this geometric framework of generalized Φ-permutahedra.

A central result is that generalized permutahedra are in bijection with the functions
f : 2[n] → R that satisfy the submodular inequalities f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).
This means that the important field of submodular optimization is essentially a study of
this family of polytopes. Our main result extends this to all finite reflection groups:

Theorem 1.1. Let Φ be a root system andW be its set of weights. Generalized Φ-permutahedra
are in bijection with the functions h :W → R that satisfy the Φ-submodular inequalities:

For every element w ∈W of the Weyl group and every simple reflection si and corresponding
fundamental weight λi,

h(w · λi) + h(wsi · λi) ≥∑
j 6=i
−Aij h(w · λj) (1.1)

where A is the Cartan matrix. Furthermore this is a minimal set of inequalities; there are

d

∑
i=1

|W|
|W[d]−N(i)|

such inequalities, where N(i) is the set of neighbors of i in the Dynkin diagram and W[d]−N(i) is
the parabolic subgroup generated by the complement of N(i).
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2 Polytopes and their deformations

2.1 Polytopes and their support functions

Let U and V be two real vector space of finite dimension d in duality via a perfect
bilinear form 〈·, ·〉 : U × V −→ R. A polyhedron P ⊂ V is an intersection of finitely
many half-spaces; it is a polytope if it is bounded. We will regard each vector u ∈ U as
a linear functional on V, which gives rise to the u-maximal face Pu := {v ∈ P : 〈u, v〉 =
maxx∈P〈u, x〉} whenever maxx∈P〈u, x〉 is finite.

Let ΣP be the (outer) normal fan in U. For each `-codimensional face F of P, the normal
fan ΣP has a dual `-dimensional face ΣP(F) = {u ∈ U : Pu = F}.

A polytope P is simple if each vertex is in exactly d facets, or equivalently if every
cone in ΣP is simplicial in that its generating rays are linearly independent. Each cone
in a fan Σ is called a face. Let Σ(`) be the set of `-dimensional cones of Σ. We call the
elements of Σ(d) chambers, the elements of Σ(d− 1) walls, and the elements of Σ(1) rays.
All fans we consider in this paper will be projective, i.e., normal fans ΣP of polyhedra P.

Given a fan Σ ⊂ U, the space of continuous piecewise linear functions on Σ is

PL(Σ) := { f : |Σ| → R | f linear on each cone of Σ and continuous}.

The support function of a polytope P is an element hP ∈ PL(ΣP) defined by

hP(u) := max
v∈P
〈u, v〉. (2.1)

Notice that we can recover P from hP by P = {v ∈ V : 〈u, v〉 ≤ hP(u) for all u ∈ |ΣP|},
so a polyhedron and its support function uniquely determine each other. Also notice
that the translation P + v of a polytope P has support function hP+v = hP + h{v}, where
h{v} is the linear functional 〈·, v〉. Therefore translating a polytope P is equivalent to
adding a global linear functional to its support function hP.

We say two polyhedra P, Q are normally equivalent (or strongly combinatorially equiva-
lent) if ΣP = ΣQ. A fan Σ is a coarsening of another fan Σ′, or Σ′ is a refinement of Σ, if
each cone of Σ is a union of cones in Σ′; we denote this by Σ � Σ′.

Definition 2.1. A polytope Q is a deformation of P if the normal fan ΣQ is a coarsening of the
normal fan ΣP.

2.2 Deformations of zonotopes

Let A = {v1, · · · , vm} ⊂ V be a set of vectors and let H = {H1, · · · , Hm} be the cor-
responding hyperplane arrangement in U given by the hyperplanes Hi = {u ∈ U :
〈u, vi〉 = 0} for 1 ≤ i ≤ m.
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Definition 2.2. Let A = {v1, · · · , vm} ⊂ V. The zonotope of A is the Minkowski sum

Z(A) := [0, v1] + · · ·+ [0, vm].

Notice that the normal fan of the zonotope Z(A) is given by the faces of the arrange-
ment H. We can describe the deformations of Z(A) easily as follows:

Proposition 2.3. Let A be a finite set of vectors in V. A polytope P is a deformation of the
zonotope Z(A) if and only if all edges of P are parallel to vectors in A.

Proof. If P is a deformation of Z(A) then its normal fan ΣP coarsens the arrangement
H. Every edge e is normal to a codimension 1 wall of ΣP, which is part of a wall of H,
and hence of a hyperplane Hi for some i. Therefore e is parallel to vi as desired.

Conversely, if every edge of P is parallel to a vector inA, every wall of ΣP is contained
in a hyperplane Hi. We can refine ΣP by extending each wall to the hyperplane that it
spans. The result is a subarrangement of H, which is further refined by H. Thus P is a
deformation of Z(A).

2.3 Deformation cones

Let P be a polytope in V and Σ = ΣP be its normal fan. For each deformation Q of
P, the normal fan ΣQ coarsens Σ, and hence the support function hQ defined in (2.1)
is piecewise-linear on Σ. Thus, by identifying Q with its support function hQ, we can
define the following.

Definition/Theorem 2.4. [2, Theorems 6.1.5–6.1.7]. Let P be a polytope in V and Σ = ΣP be
its normal fan. The deformation cone of P (or of Σ) is

Def(P) = Def(Σ) := {hQ |Q is a deformation of P} = {h ∈ PL(Σ) | h is convex}.

Remark 2.5. For each ray ρ ∈ Σ(1) let uρ be a vector in the direction of ρ. When Σ is a rational
fan, we let uρ be the first lattice point on the ray ρ. Let R = {uρ : ρ ∈ Σ(1)}. A piecewise
linear function on Σ is determined by its values on the uρs, so we may regard it as a function
h : R → R. When the fan Σ is simplicial, those values may be chosen arbitrarily, so PL(Σ) may
be identified with RR.

2.3.1 The wall crossing criterion

Definition 2.6. (Wall-crossing inequalities) Let τ ∈ Σ(d− 1) be a wall separating two cham-
bers σ and σ′. Choose any d− 1 linearly independent rays ρ1, . . . , ρd−1 of τ and any two rays
ρ, ρ′ of σ, σ′, respectively, that are not in τ. Up to scaling, there is a unique linear dependence of
the form

c · uρ + c′ · uρ′ =
d−1

∑
i=1

ci · uρi (2.2)
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with c, c′ > 0. To the wall τ we associate the wall-crossing inequality

IΣ
τ (h) := c · h(uρ) + c′ · h(uρ′)−

d−1

∑
i=1

ci · h(uρi) ≥ 0, (2.3)

which a piecewise linear function h ∈ PL(Σ) must satisfy in order to be convex.

When Σ is complete and simplicial, the element IΣ
τ ∈ PL(Σ)∨ is well-defined up to

positive scaling. Notice that IΣ
τ (h) = 0 if and only if h is represented by the same linear

functional at both sides on τ, which happens if and only if τ is no longer a wall in the
underlying fan of h.

Lemma 2.7. (Wall-Crossing Criterion) [2, Theorems 6.1.5–6.1.7] Let Σ be a complete fan in
U. A continuous piecewise linear function h ∈ PL(Σ) is a support function of a polytope Q with
ΣQ � Σ if and only if it satisfies the wall-crossing inequality (2.3) for each wall τ of Σ.

Note that V embeds into PL(Σ) by v 7→ 〈v, ·〉. The following is a rephrasing of [2,
pp. 4.2.12, 6.3.19–22].

Proposition 2.8. Let Σ be the normal fan of a polytope P. Say h ∼ h′ for two functions
h, h′ ∈ PL(Σ) if h− h′ is a globally linear function on U, or equivalently, if h− h′ ∈ V ⊂ PL(Σ).
Then:

• Def Cone: Def(Σ) is the polyhedral cone parametrizing deformations of P. It is full dimen-
sional in PL(Σ). Its linearity space is the d-dimensional space V ⊂ PL(Σ) of global linear
functions on |Σ| = U, corresponding to the d-dimensional space of translations of P.

• Nef Cone: Nef(Σ) := Def(Σ)/V = Def(Σ)/ ∼ is the quotient of Def(Σ) by its linearity
space V of globally linear functions. It is a strongly convex cone in PL(Σ)/V parametriz-
ing the deformations of P up to translation.

Remark 2.9. When Σ is a rational fan, Nef(Σ) is the Nef (numerically effective) cone of
the toric variety associated to Σ [2, Chapter 6.3]. The Mori cone NE(Σ) is the cone polar to
De f (Σ). More precisely,

NE(Σ) := Cone
(

IΣ
τ | τ ∈ Σ(d− 1)

)
⊂ PL(Σ)∨,

2.3.2 Batyrev’s criterion

When Σ is simplicial, Batyrev’s criterion ([2, Lemma 6.4.9]) offers another useful test for
convexity, and hence an alternative description of the deformation cone Def(Σ) = Def(P)
when Σ = ΣP. To state it, we need the following notion.
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Definition 2.10. Let Σ be a simplicial fan. A primitive collection F is a set of rays of Σ
such that any proper subset F′ ( F forms a cone in Σ but F itself does not. In other words,
the primitive collections of a simplicial fan correspond to the minimal non-faces of the associated
simplicial complex.

Lemma 2.11. (Batyrev’s Criterion) [2, Theorem 6.4.9] Let Σ be a complete simplicial fan. A
piecewise linear function h ∈ PL(Σ) is in the deformation cone Def(Σ) (and hence the support
function of a polytope) if and only if

∑
ρ∈F

h(uρ) ≥ h

(
∑
ρ∈F

uρ

)

for any primitive collection F of rays of Σ.

The material in this section can be rephrased in terms of triangulations of point
configurations (see [3, Section 5]). Deformation cones are instances of secondary cones
for the collection of vectors {uρ : ρ ∈ Σ(1)}. The Wall-Crossing criterion Lemma 2.7 is
called the local folding condition in [3, Theorem 2.3.20].

3 Reflection groups and Coxeter complexes

In this section we review the combinatorial aspects of finite reflection groups that we
will need.

3.1 Root systems and Coxeter complexes

We will identify V with its own dual by means of a positive definite inner product
〈·, ·〉 : V × V → R. Any vector v ∈ V defines a linear automorphism sv on V by
reflecting across the hyperplane orthogonal to v; that is,

sv(x) := x− 2〈x, v〉
〈v, v〉 v. (3.1)

Definition 3.1. A root system Φ is a finite set of vectors in an inner product real vector space
V satisfying

(R0) span(Φ) = V,

(R1) for each root α ∈ Φ, the only scalar multiples of α that are roots are α and −α, and

(R2) for each root α ∈ Φ we have sα(Φ) = Φ.
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Each root α ∈ Φ gives rise to a hyperplane Hα = {x ∈ V : 〈α, x〉 = 0}. This set
of hyperplanes HΦ = {Hα : α ∈ Φ} is called the Coxeter arrangement. The Coxeter
complex is the associated fan ΣΦ, which is simplicial. We will often use these two terms
interchangeably, and drop the subscript Φ when the context is clear.

The combinatorial structure of the Coxeter complex ΣΦ is closely related to the alge-
braic structure of the group WΦ, as we now explain. Let us fix a chamber (maximal cone)
of ΣΦ to be the fundamental domain D; recall that it is simplicial. Then the simple roots
∆ = {α1, · · · , αd} ⊂ Φ are the roots whose positive halfspaces minimally cut out the
fundamental domain; that is, D = {x ∈ V : 〈αi, x〉 ≥ 0 for 1 ≤ i ≤ d}. The simple roots
form a basis for V, and we call d = dim V the rank of the root system Φ. The positive
roots are those that are non-negative combinations of simple roots; we denote this set by
Φ+ ⊂ Φ. We have that Φ = Φ+ t (−Φ+). The Cartan matrix is the d× d integer matrix

A whose entries are Aij := 2
〈αi,αj〉
〈αi,αi〉

for 1 ≤ i, j ≤ d.

3.2 Weyl groups, parabolic subgroups, and the Coxeter complex

Proposition 3.2. Let Φ be a root system spanning V and let W = WΦ be the subgroup of GL(V)
generated by the reflections sα for α ∈ Φ. Then W is a finite group, called the Weyl group of Φ.

The action of W on V induces an action on the Coxeter complex ΣΦ. This action
behaves especially well on the top-dimensional faces:

Proposition 3.3. The Weyl group W acts regularly on the set ΣΦ(d) of chambers of the Coxeter
arrangement; that is, for any two chambers σ and σ′ there is a unique element w ∈ W such that
w · σ = σ′. In particular, the chambers of the Coxeter arrangement are in bijection with W.

The lower dimensional faces of ΣΦ correspond to certain subgroups of W and their
cosets. The parabolic subgroups of W are the subgroups WI := 〈sα : α ∈ I〉 ⊂ W for each
I ⊆ ∆. They are in bijection with the faces of the fundamental domain, where WI is
mapped to the face

CI := {x ∈ D : 〈x, α〉 = 0 for all α ∈ I, 〈x, α〉 ≥ 0 for all α ∈ ∆\I} for I ⊆ ∆.

The parabolic cosets are the right cosets of parabolic subgroups.

Proposition 3.4. The faces of the Coxeter complex are in bijection with the parabolic cosets of
W, through the labeling F 7→ {w : F ⊆ wD}. Under the action of W on the Coxeter complex
Σ, the orbit of the face CI (which is labeled WI) is the set of faces labeled by the right cosets of
WI . Furthermore, for any v in the interior of CI , the stabilizer of v under the action of W is the
parabolic subgroup WI .

Two special cases, stated in the following corollaries, are especially important to us.
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Corollary 3.5. The walls of the Coxeter complex are labeled by the pairs {w, wsi} = wW{i} for
w ∈W and si ∈ S. The wall labeled {w, wsi} separates the chambers labeled w and wsi.

Definition/Proposition 3.6. Let the fundamental weights (λ1, · · · , λd) form the basis of
V dual to the simple roots (α1, · · · , αd); that is, 〈λi, αj〉 = δij. Let the set of weights be
W = W · {λ1, · · · , λd}. Each weight can be expressed as w · λi for a unique i (although the w
is not unique).

Corollary 3.7. The d rays of the fundamental domain are spanned by the fundamental weights
λ1, . . . , λd, and the rays of the Coxeter complex are spanned by the weights. These correspon-
dences are bijective.

Theorem 3.8. If V′ is any subset of V then the subgroup WV′ ≤ W fixing V′ pointwise is
generated by the reflections sα that it contains.

4 Coxeter permutahedra and some important deformations

Throughout this section, let Φ be a root system and W be its Weyl group.

Definition/Proposition 4.1. The standard Coxeter permutahedron of type Φ or
Φ-permutahedron is the Minkowski sum of the roots of Φ; that is, ΠΦ := ∑α∈Φ[0, α].

A generalized Φ-permutahedron or Φ-polymatroid is a deformation of the Φ-permutahedron
ΠΦ; that is, a polytope whose normal fan coarsens the Coxeter complex ΣΦ.

Proposition 4.2. The following families of polytopes are generalized Coxeter permutahedra:
1. the orbit polytopes PΦ(x) = conv(W · x) for x ∈ V.,
2. the Coxeter-graphic zonotopes ∑α∈Ψ[0, α] for Ψ ⊆ Φ,
3. the Coxeter matroids of Gelfand–Serganova [1],
4. the Coxeter cones of Reiner [5] and Stembridge [6], and
5. the Coxeter associahedra of Hohlweg-Lange-Thomas [4].

These families of polyhedra model the Coxeter-theoretic analogs of compositions, graphs, matroids,
posets, and clusters, respectively.

An orbit polytope PΦ(x) can always be defined by a point x in the fundamental
domain D, and its normal fan depends only on the minimal face of D containing it:

Proposition 4.3. For x in the interior of CI , the chambers of the normal fan of PΦ(x) are in
bijection with W/WI . The chamber of ΣPΦ(x) corresponding to the coset wWI is the union of the
|WI | chambers of the Coxeter complex ΣΦ labeled wwI for wI ∈WI .

The following special case will be important below: When x is in the interior of C{i},
the normal fan of PΦ(x) is obtained by merging the chambers w · D and siw · D for each
w ∈W.
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5 Deformation cone for Coxeter complexes

Our next goal is to describe the deformation cone of Coxeter permutahedra. Recall
that a piecewise linear function on a fan is uniquely determined by its restriction to
the rays of the fan. Since each ray of the Coxeter complex ΣΦ contains a weight, and
this correspondence is bijective, we may identify the space PL(ΣΦ) of piecewise-linear
functions on ΣΦ, with the space RW of functions fromW to R.

5.1 Φ-submodular functions

Definition 5.1. A function h :W → R is Φ-submodular if the following equivalent conditions
hold:
• h ∈ Def(ΣΦ).
• When regarded as a piecewise linear function in PL(ΣΦ), the function h is convex.
• The polytope {v ∈ V : 〈λ, v〉 ≤ h(λ) for all λ ∈ W} is a generalized Φ-permutahedron.
• The polytope {v ∈ V : 〈λ, v〉 ≤ h(λ) for all λ ∈ W} has edges parallel to roots in Φ.

We call Def(ΣΦ) ⊂ RW the Φ-submodular cone.

We now describe the Φ-submodular. The Coxeter complex is simplicial which makes
it easier to apply the results in Section 2.

Theorem 5.2. A function h : W → R is Φ-submodular if and only if the following two
equivalent sets of inequalities hold:

1. (Local Φ-submodularity) For every element w ∈ W of the Weyl group and every simple
reflection si and corresponding fundamental weight λi,

h(w · λi) + h(wsi · λi) ≥∑
j 6=i
−Aij h(w · λj) (5.1)

where A is the Cartan matrix.

2. (Global Φ-submodularity) For any two weights λ, λ′ ∈ W

h(λ) + h(λ′) ≥ h(λ + λ′) (5.2)

where h is regarded as a piecewise-linear function on ΣΦ.

Remark 5.3. To interpret the global Φ-submodular inequalities (5.2) directly in terms of the
function h ∈ RW , we need to find the minimal cone C of ΣΦ containing λ + λ′. If WC is the
set of weights in the cone C, we can write λ + λ′ = ∑w∈WC

cww for a unique choice of positive
constants cw, and (5.2) means that h(λ) + h(λ′) ≥ ∑w∈WC

cwh(w). In particular, (5.2) holds
trivially when λ and λ′ span a face of ΣΦ.
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Proof of Theorem 5.2, Part 1. We know that the deformation cone Def(ΣΦ) is given by the
wall crossing inequalities of Lemma 2.7. We first compute them for the walls of the
fundamental domain D.

Let us apply Definition 2.6 to the wall Hi = Hαi of D orthogonal to the simple root
αi, which separates the chambers D and si · D. Notice that the only ray of D that is not
on the wall Hi is the one spanned by the fundamental weight λi. Similarly, the only ray
of siD that is not on Hi is the one spanned by the weight si · λi. Therefore we need to
find the coefficients such that

cλi + c′si · λi = ∑
j 6=i

cjλj.

Since λi and siλi are symmetric with respect to the wall Hi the coefficients c and c′ in the
equation above are equal, and we may set them both equal to 1. Then, to compute the
coefficient cj for j 6= i, let us take the inner product of both sides with αj. We obtain that

〈si · λi, αj〉 = cj,

keeping in mind that the bases ∆ = {α1, . . . , αd} and {λ1, . . . , λd} are dual, so 〈αj, λk〉
equals 1 if j = k and 0 otherwise. Using the formula (3.1) for the reflection si we obtain
cj = −Aij. It follows that

λi + si · λi = ∑
i 6=j
−Aijλj, (5.3)

so the wall-crossing inequality is

h(λi) + h(si · λi) ≥∑
j 6=i
−Aijh(λj), (5.4)

in agreement with (5.1).
Let us now compute the wall-crossing inequality for a general wall wHi, which sepa-

rates chambers w ·D and wsi ·D. The rays of these chambers that are not on the wall are
spanned by w · λi and wsi · λi, respectively. Since W acts linearly, (5.3) implies the linear
relation

w · λi + wsi · λi ≥∑
j 6=i
−Aijw · λj.

Therefore the wall-crossing inequalities are indeed the ones given in (5.1).

Proof of Theorem 5.2, Part 2. Sketch: This follows from Batyrev’s criterion (Lemma 2.11)
and the fact that the Coxeter complex is flag.

Example 5.4. In type A, when W = Sd, the weightsW are in bijection with the subsets of [d].
The local submodular inequalities produced by Theorem 5.2 say that

h(A ∪ b) + h(A ∪ c) ≥ h(A) + h(A ∪ b ∪ c) for A ⊂ [d] and b, c /∈ A,
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whereas the global submodular inequalities say that

h(B) + h(C) ≥ h(B ∪ C) + h(B ∩ C) for B, C ⊆ [d].

The second set of inequalities is the usual definition of submodularity, but it is known in the
optimization literature that the first subset of conditions (which corresponds to B = A ∪ b and
C = A∪ c) minimally determine the others. The same phenomenon happens in all Coxeter types.

6 Facets of the Φ-submodular cone

In this section we enumerate the facets of the Φ-submodular cone, after proving that
they are precisely given by the wall crossing inequalities (5.4). It is not always the case
that every wall-crossing inequality for a fan Σ defines a facet of the deformation cone
Def(Σ). To prove it in this special case Σ = ΣΦ, we will show equivalently that the rays
spanned by Iτ are extremal in the Mori cone NE(ΣΦ) = cone(Iτ : τ is a wall of ΣΦ) in
(PL(ΣΦ))

∨.
Before proving this, it is useful to remark that the action of W on the Coxeter complex

naturally gives rise to actions of W on the vector space PL(ΣΦ), the deformation cone
Def(ΣΦ) ⊂ PL(ΣΦ), and the Mori cone NE(ΣΦ) ⊂ (PL(ΣΦ))

∨.

Theorem 6.1. Every local Φ-submodular inequality (5.1) is a facet of the W-submodular cone.

Proof. By Proposition 4.3 and the comment following it, we can produce, for each 1 ≤
i ≤ d, a generalized Φ-permutahedron Qi whose normal fan is obtained from ΣΦ by
removing the walls wHi separating chambers w · D and wsi · D for all w ∈ W. The
support function of this polytope satisfies

IΣ
τ (hQi) = 0, if τ = wHi for some w ∈W, and (6.1)

IΣ
τ (hQi) > 0, otherwise. (6.2)

This means that the set of rays {IwHi : w ∈ W} form a face Fi of the Mori cone, so at
least one of them must be extremal. But these rays form an orbit of the action of W on
the Mori cone, so if one of them is extremal, all are extremal.

Theorem 6.2. The number of facets of the Φ-submodular cone is equal to

d

∑
i=1

|W|
|W[d]−N(i)|

,

where N(i) is the set of neighbors of i in the Dynkin diagram and W[d]−N(i) is the parabolic
subgroup generated by the complement of N(i).
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Sketch of Proof: We have one inequality for each pair of an element 1 ≤ i ≤ d and a
group element w ∈ W, but there are many repetitions. For each i we claim that the set
of elements w stabilizing the wall-crossing inequality (5.4) is W[d]−N(i).

If an element w stabilizes (5.4), it must stabilize the support of the right hand side,
that is, the set of weights {λj : Aij 6= 0} = {λj : j ∈ N(i)}. Therefore w stabilizes
the sum of those weights, which is in the interior of cone C[d]−N(i). By Proposition 3.4,
w ∈W[d]−N(i).

Conversely, suppose w ∈ W[d]−N(i). Then for each j ∈ N(i) we have w ∈ W[d]−j,
so w stabilizes λj individually. Therefore w does stabilize the right hand side of (5.4).
Now, each simple reflection sk with k /∈ [d]− N(i)− i stabilizes λi because k 6= i, and
it stabilizes si · λi since si and sk commute. The remaining reflection si interchanges λi
and si · λi. It follows that each generator of W[d]−N(i), and hence the whole parabolic
subgroup, stabilizes the left-hand side of (5.4) as well.

We conclude that, for fixed i, each inequality in (5.4) is repeated |W[d]−N(i)|, and hence
the number of different inequalities is |W|/|W[d]−N(i)|. The desired result follows.
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