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Abstract. Recently James Martin introduced multiline queues, and used them to give
a combinatorial formula for the stationary distribution of the multispecies asymmet-
ric simple exclusion exclusion process (ASEP) on a circle. The ASEP is a model of
particles hopping on a one-dimensional lattice, which has been extensively studied in
statistical mechanics, probability, and combinatorics. In this article we give an inde-
pendent proof of Martin’s result, and we show that by introducing additional statistics
on multiline queues, we can use them to give a new combinatorial formula for both
the symmetric Macdonald polynomials Pλ(x; q, t), and the nonsymmetric Macdonald
polynomials Eλ(x; q, t), where λ is a partition. This formula is rather different from
others that have appeared in the literature (Haglund-Haiman-Loehr’05, Ram-Yip’11,
and Lenart’09). Our proof uses results of Cantini, de Gier, and Wheeler who recently
linked the multispecies ASEP on a circle to Macdonald polynomials.
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1 Introduction and results

Introduced in the late 1960s [21, 27], the asymmetric simple exclusion process (ASEP) is
a model of interacting particles hopping left and right on a one-dimensional lattice of
n sites. There are many versions of the ASEP: the lattice might be a lattice with open
boundaries, or a ring, among others; and we may allow multiple species of particles with
different “weights". In this article, we will be concerned with the multispecies ASEP on a
ring, where the rate of two adjacent particles swapping places is either 1 or t, depending
on their relative weights. Recently James Martin [23] gave a combinatorial formula in
terms of multiline queues for the stationary distribution of this multispecies ASEP on a
ring, building on his earlier joint work with Ferrari [11].
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On the other hand, recent work of Cantini, de Gier, and Wheeler [4] gave a link
between the multispecies ASEP on a ring and Macdonald polynomials. Symmetric Mac-
donald polynomials Pλ(x; q, t) [19] are a family of multivariable orthogonal polynomi-
als indexed by partitions, whose coefficients depend on two parameters q and t; they
generalize multiple important families of polynomials, including Schur polynomials (at
q = t = 0) and Hall-Littlewood polynomials (at q = 0). Nonsymmetric Macdonald polyno-
mials [8, 20] were introduced shortly after the introduction of Macdonald polynomials,
and defined in terms of Cherednik operators; the symmetric Macdonald polynomials can
be constructed from their nonsymmetric counterparts.

There has been a lot of work devoted to understanding Macdonald polynomials from
a combinatorial point of view. Haglund-Haiman-Loehr [14, 13] gave a combinatorial
formula for the transformed Macdonald polynomials H̃µ(x; q, t) (which are connected to the
geometry of the Hilbert scheme [16]) as well as for the integral forms Jµ(x; q, t), which
are scalar multiples of the classical monic forms Pµ(x; q, t). They also gave a formula for
the nonsymmetric Macdonald polynomials [15]. Building on work of Schwer [26], Ram
and Yip [25] gave general-type formulas for both the Macdonald polynomials Pλ(x; q, t)
and the nonsymmetric Macdonald polynomials; however, their type A formulas have
many terms. Lenart [18] showed how to “compress" the Ram-Yip formula in type A to
obtain a Haglund-Haiman-Loehr type formula for the polynomials Pλ(x; q, t) for λ with
all parts distinct. Finally, Ferreira [12] and Alexandersson [2] gave Haglund-Haiman-
Loehr type formulas for permuted basement Macdonald polynomials, which generalize the
nonsymmetric Macdonald polynomials.

The main goal of this article is to define some polynomials combinatorially in terms
of multiline queues which simultaneously compute the stationary distribution of the
multispecies ASEP and also symmetric Macdonald polynomials Pλ(x; q, t). More specifi-
cally, we introduce some polynomials Fµ(x1, . . . , xn; q, t) = Fµ(x; q, t) ∈ Z(q, t)[x1, . . . , xn]
which are certain weight-generating functions for multiline queues with bottom row µ,
where µ = (µ1, . . . , µn) is an arbitrary weak composition. We show that these polynomi-
als have the following properties:

1. When x1 = · · · = xn = 1 and q = 1, Fµ(x; q, t) is proportional to the steady state
probability that the multispecies ASEP is in state µ. (This recovers a result of Martin
[23], but we give an independent proof.)

2. When µ is a partition, Fµ(x; q, t) is equal to the nonsymmetric Macdonald polyno-
mial Eµ(x; q, t).

3. For any partition λ, the quantity Zλ(x; q, t) := ∑µ Fµ(x; q, t) (where the sum is over
all distinct compositions obtained by permuting the parts of λ) is equal to the
symmetric Macdonald polynomial Pλ(x; q, t).

In the remainder of the introduction we will make the above statements more precise.
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1.1 The multispecies ASEP

We start by defining the multispecies ASEP or the L-ASEP as a Markov chain on the
cycle Zn with L classes of particles as well as holes. The L-ASEP on a ring is a natural
generalization for the two-species ASEP; for the latter, solutions were given using a
matrix product formulation in terms of a quadratic algebra similar to the matrix ansatz
described in [9].

For the L-ASEP when t = 0 (i.e. particles only hop in one direction), Ferrari and
Martin [11] proposed a combinatorial solution for the stationary distribution using mul-
tiline queues. This construction was restated as a matrix product solution in [10] and
was generalized to the partially asymmetric case (t generic) in [24]. In [3] the authors
explained how to construct an explicit representation of the algebras involved in the L-
ASEP. Finally James Martin [23] gave an ingenious combinatorial solution for the station-
ary distribution of the L-ASEP when t is generic, using more general multiline queues
and building on ideas from [11] and [10].

Definition 1.1. Let λ = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be a partition with greatest part λ1 = L,
and let t be a constant such that 0 ≤ t ≤ 1. Let States(λ) be the set of all weak compositions of
length n obtained by permuting the parts of λ. We consider indices modulo n; i.e. if µ = µ1 . . . µn
is a composition, then µn+1 = µ1. The multispecies asymmetric simple exclusion process
ASEP(λ) on a ring is the Markov chain on States(λ) with transition probabilities:

• If µ = AijB and ν = AjiB are in States(λ) (here A and B are words in the parts of λ),
then Pµ,ν = t

n if i > j and Pµ,ν = 1
n if i < j.

• Otherwise Pµ,ν = 0 for ν 6= µ and Pµ,µ = 1−∑µ 6=ν Pµ,ν.

We think of the 1’s, 2’s, . . . , L’s as representing various types of particles of different weights;
each 0 denotes an empty site. See Figure 1.

2

2
1

2

3

0
0

0

t
1 t

1t

Figure 1: The multispecies ASEP on the lattice Z8. There is one particle of type 3,
three particles of type 2, one particle of type 1, and three holes (0’s), so we refer to this
Markov chain as ASEP(3, 2, 2, 2, 1, 0, 0, 0).
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1.2 Multiline queues

We now define ball systems and multiline queues. These concepts are due to Ferrari and
Martin [11] for t = 0 and q = 1 and to Martin [23] for t general and q = 1.

Definition 1.2. Fix positive integers L and n. A ball system B is an L× n array in which each
of the Ln positions is either empty or occupied by a ball. We number the rows from bottom to top
from 1 to L, and the columns from left to right from 1 to n. Moreover we require that there is at
least one ball in the top row, and that the number of balls in each row is weakly increasing from
top to bottom.

1 2 3 4 5 6 7 8

Row 3

Row 2

Row 1

Figure 2: A ball system.

Definition 1.3. Given an L× n ball system B, a multiline queue Q (for B) is, for each row r
where 2 ≤ r ≤ L, a matching of balls from row r to row r− 1. A ball b may be matched to any
ball b′ in the row below it; we connect b and b′ by a shortest strand that travels either straight
down or from left to right (allowing the strand to wrap around the cylinder if necessary). We
refer to two balls being matched by a pairing, with pairings obtained by the following algorithm:

• We start by matching all balls in row L to a collection of balls (their partners) in row L− 1.
We then match those partners in row L− 1 to new partners in row L− 2, and so on. This
determines a set of balls, each of which we label by L.

• We then take the unmatched balls in row L− 1 and match them to partners in row L− 2.
We then match those partners in row L− 2 to new partners in row L− 3, and so on. This
determines a set of balls, each of which we label by L− 1.

• We continue in this way, determining a set of balls labeled L− 2, L− 3, and so on, and
finally we label any unmatched balls in row 1 by 1.

• If at any point there’s a free (unmatched) ball b′ directly underneath the ball b we’re match-
ing, we must match b to b′. We say that b and b′ are trivially paired.

Let µ = (µ1, . . . , µn) ∈ {0, 1, . . . , L}n be the labeling of the balls in row 1 at the end of this
process (where an empty position is denoted by 0). We then say that Q is a multiline queue of
type µ. See Figure 3 for an example.
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Figure 3: A multiline queue of type (2, 2, 0, 0, 0, 3, 2, 1).

Remark 1.4. Note that the induced labeling on the balls satisfies the following properties:

• If ball b with label i is directly above ball b′ with label j, then we must have i ≤ j.

• Moreover if i = j, then those two balls are matched to each other (a trivial pairing).

We now define the weight of each multiline queue. Here we generalize Martin’s ideas
[23] by adding parameters q and x1, . . . , xn.

Definition 1.5. Given a multiline queue Q, we let mi be the number of balls in column i. We
define the x-weight of Q to be wtx(Q) = xm1

1 xm2
2 . . . xmn

n .
We also define the q, t-weight of Q by associating a weight to each nontrivial pairing p of

balls. These weights are computed in order as follows. Consider the nontrivial pairings between
rows r and r − 1. We read the balls in row r in decreasing order of their label (from L to r);
within a fixed label, we read the balls from right to left. As we read the balls in this order, we
imagine placing the strands pairing the balls one by one. The balls that have not yet been matched
in row r− 1 are considered free. If pairing p matches ball b in row r and column c to ball b′ in
row r − 1 and column c′, then the free balls in row r − 1 and columns c + 1, c + 2, . . . , c′ − 1
(indices considered modulo n) are considered skipped. Note that the balls which are trivially
paired between rows r and r− 1 are not considered free. Let i be the label of balls b and b′. We
then associate to pairing p the weight

wtq,t(p) =


(1−t)t# skipped

1−qi−r+1t# free · qi−r+1 if c′ < c
(1−t)t# skipped

1−qi−r+1t# free if c′ > c.

Note that the extra factor qi−r+1 appears precisely when the strand connecting b to b′ wraps
around the cylinder.

Having associated a q, t-weight to each nontrivial pairing of balls, we define the q, t-weight of
the multiline queue Q to be

wtq,t(Q) = ∏
p

wtq,t(p),

where the product is over all nontrivial pairings of balls in Q.
Finally the weight of Q is defined to be

wt(Q) = wtx(Q)wtq,t(Q).
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Example 1.6. In Figure 3, the x-weight of the multiline queue Q is x1x2
2x3x4x5x2

6x7x8.
The weight of the unique pairing between row 3 and row 2 is (1−t)t

1−qt4 . The weight of the pairing

of balls labeled 3 between row 2 and 1 is (1−t)
1−q2t5 , and the weights of the pairings of balls labeled 2

are (1−t)t2

1−qt3 · q and 1−t
1−qt2 . Therefore

wt(Q) = x1x2
2x3x4x5x2

6x7x8 ·
(1− t)t
1− qt4 ·

(1− t)
1− q2t5 ·

(1− t)t2

1− qt3 · q ·
1− t

1− qt2 .

We now define the weight-generating function for multiline queues of a given type,
as well as the combinatorial partition function for multiline queues.

Definition 1.7. Let µ = (µ1, . . . , µn) ∈ {0, 1, . . . , L}n be a composition with largest part L. Set

Fµ = Fµ(x1, . . . , xn; q, t) = Fµ(x; q, t) = ∑
Q

wt(Q),

where the sum is over all L× n multiline queues of type µ.
Let λ = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be a partition with n parts and largest part L. We set

Zλ = Zλ(x1, . . . , xn; q, t) = Zλ(x; q, t) = ∑
µ

Fµ(x1, . . . , xn; q, t),

where the sum is over all distinct compositions µ obtained by permuting the parts of λ. We call
Zλ the combinatorial partition function.

Remark 1.8. Recently Aas-Grinberg-Scrimshaw [1] studied multiline queues in the case that
t = 0, putting in “spectral weights" (which correspond to our x-weight); they then gave a
connection to tensor products of KR-crystals.

1.3 The main result

The goal of this article is to show that with the refined statistics given in Definition 1.5,
we can use multiline queues to give formulas for Macdonald polynomials.

Proposition 1.9. Let λ be a partition. Then the nonsymmetric Macdonald polynomial Eλ(x; q, t)
is equal to the quantity Fλ(x; q, t) from Definition 1.7.

Theorem 1.10. Let λ be a partition. Then the symmetric Macdonald polynomial Pλ(x; q, t) is
equal to the quantity Zλ(x; q, t) from Definition 1.7.

See Figure 4 for an example illustrating Proposition 1.9.
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Figure 4: The generating function for the multiline queues of type (2, 2, 1, 1, 0, 0) give
an expression for the nonsymmetric Macdonald polynomial E(2,2,1,1,0,0)(x; q, t)

2 The Hecke algebra and its connection to ASEP and Mac-
donald polynomials

To explain the connection between the ASEP and Macdonald polynomials, and explain
how we prove Proposition 1.9 and Theorem 1.10, we need to introduce the Hecke algebra
and recall some notions from [17] and Cantini-deGier-Wheeler [4].

Definition 2.1. The Hecke algebra of type An−1 is the algebra with generators Ti for 1 ≤ i ≤
n− 1 and parameter t which satisfies the following relations:

(Ti − t)(Ti + 1) = 0, TiTi±1Ti = Ti±1TiTi±1, TiTj = TjTi when |i− j| > 1. (2.1)

There is an action of the Hecke algebra on polynomials f (x1, . . . , xn) which is defined
as follows:

Ti = t− txi − xi+1

xi − xi+1
(1− si) for 1 ≤ i ≤ n− 1, (2.2)

where si acts by

si f (x1, . . . , xi, xi+1, . . . , xn) := f (x1, . . . , xi+1, xi, . . . , xn). (2.3)

One can check that the operators (2.2) satisfy the relations (2.1).
We also define the shift operator ω via (ω f )(x1, . . . , xn) = f (qxn, x1, . . . , xn−1). Given

a composition µ = (µ1, . . . , µn), we let |µ| := ∑ µi and define siµ := si(µ1, . . . , µn) =
(µ1, . . . , µi+1, µi, . . . , µn) for 1 ≤ i ≤ n− 1.
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The following notion of qKZ family was introduced in [17], also explaining the re-
lationship of such polynomials to nonsymmetric Macdonald polynomials. We use the
conventions of [5, Definition 2], also [4, Section 1.3], and [4, (23)].

Definition 2.2. Fix a partition λ = (λ1, . . . , λn). We say that a family { fµ=λ◦σ}σ∈Sn of
homogeneous degree |λ| polynomials in n variables x = (x1, . . . , xn), with coefficients which are
rational functions of q and t, is a qKZ family if they satisfy

Ti fµ(x; q, t) = fsiµ(x; q, t), when µi > µi+1, (2.4)
Ti fµ(x; q, t) = t fµ(x; q, t), when µi = µi+1, (2.5)

qµn fµ(x; q, t) = fµn,µ1,...,µn−1(qxn, x1, . . . , xn−1; q, t). (2.6)

The following lemma explains the relationship of the fµ’s to the ASEP.

Lemma 2.3. [5, Corollary 1]. Consider the polynomials fµ from Definition 2.2. When q =
x1 = · · · = xn = 1, fµ(1, . . . , 1; 1, t) is proportional to the steady state probability that the
multispecies ASEP is in state µ.

As we will explain in Lemma 2.6 and Lemma 2.7, the polynomials fµ are also related
to Macdonald polynomials. We first quickly review the relevant definitions.

Definition 2.4. Let 〈·, ·〉 denote the Macdonald inner product on power sum symmetric func-
tions [19, Chapter VI, (1.5)], where < denotes the dominance order on partitions. Let λ be a
partition. The (symmetric) Macdonald polynomial Pλ(x1, . . . , xn; q, t) is the unique homoge-
neous symmetric polynomial in x1, . . . , xn which satisfies 〈Pλ, Pµ〉 = 0, λ 6= µ and

Pλ(x1, . . . , xn; q, t) = mλ(x1, . . . , xn) + ∑
µ<λ

cλ,µ(q, t)mµ(x1, . . . , xn).

The following definition can be found in [20] (also [22] for a nice exposition).

Definition 2.5. For 1 ≤ i ≤ n, define the q-Dunkl or Cherednik operators [6, 7] by

Yi = T−1
i . . . T−1

n−1ωT1 . . . Ti−1.

The Cherednik operators commute pairwise, and hence possess a set of simultaneous eigen-
functions, which are (up to scalar) the nonsymmetric Macdonald polynomials. We index the
nonsymmetric Macdonald polynomials Eµ(x; q, t) by compositions µ so that

Eµ(x; q, t) = xµ + ∑
ν<µ

bµνxν.

In particular, when λ = (λ1 ≥ · · · ≥ λn ≥ 0) is a partition, we have that for 1 ≤ i ≤ n,

YiEλ = yi(λ)Eλ (2.7)

where
yi(λ) = qλi t#{j<i|λj=λi}−#{j>i|λj=λi}.
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In the following Lemmas 2.6 and 2.7, let { fµ=λ◦σ}σ∈Sn be a set of homogeneous degree
|λ| polynomials as in Definition 2.2. Note that Lemma 2.6 below essentially appears in
[17, Section 3.3]. We thank Michael Wheeler for his explanations.

Lemma 2.6. Let λ = (λ1, . . . , λn) be a partition. Then fλ is a scalar multiple of the nonsym-
metric Macdonald polynomial Eλ.

Lemma 2.7 ([5, Lemma 1]). Let λ be a partition. Then the Macdonald polynomial Pλ(x1, . . . ,
xn; q, t) is a scalar multiple of

∑
µ

fµ(x1, . . . , xn; q, t),

where µ ranges over all distinct compositions which can be obtained by permuting the parts of λ.

The strategy of our proof of Theorem 1.10 is very simple. Our main task is to show
that the Fµ’s satisfy the following properties.

Theorem 2.8.

TiFµ(x; q, t) = Fsiµ(x; q, t), when µi > µi+1, (2.8)
TiFµ(x; q, t) = tFµ(x; q, t), when µi = µi+1, (2.9)

qµn Fµ(x; q, t) = Fµn,µ1,...,µn−1(qxn, x1, . . . , xn−1; q, t). (2.10)

We prove (2.10) directly using multiline queues. We prove (2.9) by showing Fµ is
symmetric in xi and xi+1 when µi = µi+1. Finally we prove (2.8) using multiline queues
by induction on the number of rows.

Next, we verify the following lemma by comparing the coefficients of xλ.

Lemma 2.9. For any partition λ,

Fλ(x; q, t) = Eλ(x; q, t),

where Eλ is the nonsymmetric Macdonald polynomial.

Then Theorem 2.8, Lemma 2.9, and Lemma 2.7 implies Theorem 1.10, that our sum
over multiline queues equals the symmetric Macdonald polynomial Pλ.

3 Comparisons to other Macdonald polynomial formulas

In this paper we used multiline queues to give a new combinatorial formula for the
Macdonald polynomial Pλ and the nonsymmetric Macdonald polynomial Eλ when λ is
a partition. We note that these new combinatorial formulas are quite different from the
combinatorial formulas given by Haglund-Haiman-Loehr [13, 14, 15], or Ram-Yip [25],
or Lenart [18].
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While it is not obvious combinatorially, we show algebraically in Proposition 3.1 that
the polynomials Fµ (for µ an arbitrary composition) are equal to certain permuted base-
ment Macdonald polynomials Eσ

α(x; q, t), which were introduced in [12] and further studied
in [2] as a generalization of nonsymmetric Macdonald polynomials (where σ ∈ Sn and
α is a composition with n parts). They have the property that the nonsymmetric Mac-
donald polynomial Eµ is equal to Ew0

rev(µ), where rev(µ) denotes the reverse composition
(µn, µn−1, . . . , µ1) of µ = (µ1, . . . , µn) and w0 = (n, . . . , 2, 1).

Proposition 3.1. For µ = (µ1, . . . , µn), define inc(µ) to be the sorting of the parts of µ in
increasing order. Then

Fµ = Eσ
inc(µ)

where σµ = inc(µ), i.e. σ is any permutation such that µσ(1) ≤ µσ(2) ≤ · · · ≤ µσ(n).

The permuted basement Macdonald polynomials can be described combinatorially
using nonattacking fillings of certain diagrams [12, 2]1, which we call permuted basement
tableaux. (Note that these permuted basement tableaux generalize the nonattacking fill-
ings from [15]). In light of this, one may wonder if there is a bijection between multiline
queues and these permuted basement tableaux. This is the case when the compositions
have distinct parts. However, for general compositions, the number of permuted base-
ment tableaux is different than the number of MLQs (there are more permuted basement
tableaux). We conjecture that there is a way to group permuted basement tableaux so
that the weight in a group equals the weight of one MLQ.
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