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The Hopf monoid of orbit polytopes
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Abstract. Many families of combinatorial objects have a Hopf monoid structure.
Aguiar and Ardila introduced the Hopf monoid of generalized permutahedra and
showed that it contains various other notable combinatorial families as Hopf sub-
monoids, including graphs, posets, and matroids. We introduce the Hopf monoid of
orbit polytopes, which is generated by the generalized permutahedra that are invariant
under the action of the symmetric group. We show that modulo normal equivalence,
these polytopes are in bijection with integer compositions. We interpret the Hopf struc-
ture through this lens, and we show that applying the first Fock functor to this Hopf
monoid gives a Hopf algebra of compositions. We describe the character group of the
Hopf monoid of orbit polytopes in terms of noncommutative symmetric functions, and
we give a combinatorial interpretation of the antipode.
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1 Introduction

In [1], Aguiar and Ardila introduced the Hopf monoid of generalized permutahedra and
proved that much of its algebraic structure can be interpreted combinatorially. Many
other combinatorial families form Hopf submonoids of generalized permutahedra, so
this theory produced new proofs of known results about graphs, matroids, posets, and
other objects. It also led to some new and surprising theorems. Associated to a Hopf
monoid is a group of multiplicative functions called the character group. Aguiar and
Ardila showed that the character groups of the Hopf monoids of permutahedra and as-
sociahedra are isomorphic to the groups of formal power series under multiplication and
composition, respectively. Using their formula for the antipode of generalized permuta-
hedra, they found that permutahedra have information about multiplicative inverses of
power series encoded in their face structure, and associahedra have analogous informa-
tion about compositional inverses of power series.

A subject of ongoing study is to examine other Hopf submonoids of generalized
permutahedra and compute the character groups of these. In this extended abstract,
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we consider the Hopf monoid generated by orbit polytopes. These are the generalized
permutahedra that are invariant under the action of the symmetric group, so this Hopf
monoid contains permutahedra as a Hopf submonoid.

This paper presents two main results. First, Theorem 4.15 describes a Hopf algebra
of compositions which results from applying the first Fock functor to the Hopf monoid
of orbit polytopes. Second, Theorem 5.5 shows that the character group of the Hopf
monoid of orbit polytopes is isomorphic to a subgroup of the group of invertible ele-
ments in the completion of the Hopf algebra of noncommutative symmetric functions
(NSym). In Section 2, we introduce some necessary background. Section 3 formally
defines orbit polytopes and shows how, up to normal equivalence, they can be viewed
as compositions. In Section 4, we interpret the product and coproduct of generalized
permutahedra in the case of orbit polytopes, and we show that these operations can be
neatly described in terms of compositions. Section 5 describes the character group, and
Section 6 contains a formula for the antipode of orbit polytopes.

2 Preliminaries

Let RI be the linearization of the finite set I, so RI is a real vector space with basis
{ei : i ∈ I}. Let RI be its dual, the set of linear functionals y : RI → R. We begin by
introducing an important equivalence relation on polytopes which will be very useful in
our investigation of orbit polytopes. Let P ⊂ RI be a polytope and F be a face of P (we
write F ≤ P).

Definition 2.1. The normal cone of F is the cone of linear functionals

NP(F) := {y ∈ RI : y attains its maximum value on P at every point in F} ⊆ RI ,

i.e. NP(F) is the cone of linear functionals that define a face of P containing F.

Definition 2.2. The normal fan NP of P is the fan in RI consisting of the normal cones of
each face of P;

NP := {NP(F) : F ≤ P}.

Definition 2.3. The polytopes P and Q are normally equivalent if NP = NQ.

Definition 2.4. The braid arrangement BI is the hyperplane arrangement in RI consist-
ing of the hyperplanes xi = xj for i, j ∈ I with i 6= j. It divides RI into closed full-
dimensional cones, or chambers. The braid fan is the fan formed by taking the set of
chambers of the braid arrangement and all of their faces.

The cones of the braid fan BI are in natural bijection with ordered partitions of the
set I. Fix a chamber of BI and call this the fundamental chamber. (For example, we could
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choose the fundamental chamber of B[n] to be the set of points in R[n] with coordinates
in decreasing order.) One can show that the faces of the fundamental chamber are in
natural bijection with compositions of the integer |I|.

Definition 2.5. A generalized permutahedron is a polytope whose normal fan is a coarsen-
ing of the braid fan.

Generalized permutahedra are polytopes with very nice combinatorial and algebraic
properties. They are equivalent to polymatroids up to translation. They can be obtained
by moving the vertices of a standard permutahedron in such a way that the edge di-
rections are preserved [5]. Proposition 2.8 gives an equivalent definition of generalized
permutahedra using submodular functions.

Definition 2.6. A submodular function is a function z : I → R where I is a finite set and z
satisfies z(∅) = 0 and z(S ∩ T) + z(S ∪ T) ≤ z(S) + z(T) for all S, T ⊆ I.

Definition 2.7. Let z : I → R be a submodular function. The base polytope of z is

P(z) =
{

x ∈ RI : ∑
i∈I

xi = z(I) and ∀ ∅ ( A ( I, ∑
a∈A

xa ≤ z(A)
}

.

Proposition 2.8 ([3]). A polytope is a generalized permutahedron if and only if it is the base
polytope of a submodular function.

3 Orbit Polytopes

In this section, we introduce orbit polytopes, the main combinatorial objects studied in
this paper.

3.1 Definition of an Orbit Polytope

The symmetric group SI acts on RI by permuting coordinates. If σ is a permutation in
SI and p = (pi : i ∈ I) ∈ RI, then this action is given by σ(p)i = pσ−1(i).

Definition 3.1. Let p ∈ RI. The orbit polytope of p is the polytope

O(p) := conv{σ(p) : σ ∈ SI}.

Orbit polytopes are also called permutahedra [5], but we avoid this terminology
in order to distinguish the Hopf monoid of orbit polytopes from the Hopf monoid of
(standard) permutahedra discussed in [1].

Orbit polytopes are closely related to weight polytopes, a general construction arising
in representation theory and the theory of finite reflection groups. The vertices of weight
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Figure 1: O(4, 3, 2, 1), the standard 4-permutahedron

polytopes are given by the orbit of a special point, called a weight, under a relevant
action. The weights arising in the representation theory of the general linear group
are all integer points; thus orbit polytopes with integer vertices are the same as weight
polytopes for GLn. These are also the same as weight polytopes arising from reflection
groups of type A.

Example 3.2. The orbit polytope O(1, 0, 0) := conv{(0, 0, 1), (0, 1, 0), (1, 0, 0)} is the stan-
dard 3-simplex.

Example 3.3. For any λ ∈ R, O(λ, . . . , λ) is a single point in RI.

Example 3.4. Let I = [n] and p = (n, n − 1, . . . , 1) ∈ Rn. Then O(p) is the standard
n-permutahedron (see Figure 1).

Proposition 3.5. Orbit polytopes are generalized permutahedra.

3.2 Orbit Polytopes as Base Polytopes of Submodular Functions

It is clear from Definition 3.1 that orbit polytopes are invariant under the action of SI .
However, one might wonder whether there exist other generalized permutahedra that
are invariant under this action. Submodular functions are a useful tool for answering
this question. A helpful discussion of submodular functions and their relationship to
generalized permutahedra can be found in [1].

Definition 3.6. A submodular function z is SI-invariant if z(S) = z(T) when |S| = |T|.

Proposition 3.7. A polytope in RI is an orbit polytope if and only if it is the base polytope of an
SI-invariant submodular function.

Corollary 3.8. Orbit polytopes are exactly the generalized permutahedra which are invariant
under the SI action on RI.



The Hopf monoid of orbit polytopes 5

O(3) O(2,1) O(1,2) O(1,1,1)

Figure 2: All normal equivalence classes of orbit polytopes in RI when |I| = 3

3.3 Orbit Polytopes Modulo Normal Equivalence

The goal of this section is to show that normal equivalence classes of orbit polytopes
O(p) for p ∈ RI are in bijection with compositions of the integer n := |I|. In the
following definition, we think of the braid arrangement as living in RI instead of RI (as
in Definition 2.4) by identifying the two isomorphic vector spaces.

Definition 3.9. Let p ∈ RI. The composition of p is the integer composition of n corre-
sponding to the unique face of the fundamental chamber of the braid arrangement BI
that contains some point in the SI-orbit of p.

Definition 3.10. The composition of an orbit polytope is the composition of any of its ver-
tices.

Proposition 3.11. Let O and O′ be orbit polytopes. Then O and O′ are normally equivalent if
and only if they have the same composition. In other words, normal equivalence classes of orbit
polytopes O(p) for p ∈ RI are in bijection with compositions of n.

Notation 3.12. Let α be a composition of n. We write Oα,I for the normal equivalence
class of orbit polytopes in RI with composition α. If the set I is clear from context, we
may simply write Oα.

Example 3.13 (Normal equivalence classes for n = 3). Let I = {1, 2, 3}. There are four
compositions of the integer 3 = |I|, so there are four normal equivalence classes of orbit
polytopes in RI (see Figure 2).

Example 3.14 (Notable families of orbit polytopes). The following compositions of n
correspond to normal equivalence classes of well-studied families of polytopes in RI
with |I| = n:

• (n): single point

• (1, . . . , 1): standard n-permutahedron

• (1, n− 1): standard n-simplex

• (k, n− k): uniform matroid polytope Uk,n; these are also known as hypersimplices
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4 Algebraic Structures on Orbit Polytopes

In [1], the authors introduce a product and coproduct which give generalized permuta-
hedra the structure of a Hopf monoid. When restricted to orbit polytopes, these opera-
tions have a neat interpretation in terms of compositions.

4.1 Toward a Product

Definition 4.1. Let P ⊂ RS and Q ⊂ RT be any polytopes. Then the product of P and Q
is the polytope

P ·Q := {(p, q) ∈ R(S t T) : p ∈ P, q ∈ Q} ⊂ R(S t T).

The identity of this product is the unique empty orbit polytope, which lives in R∅.

The vertices of the product of two polytopes are exactly the products of vertices of the
two polytopes. This means that the vertex set of a product of nonempty orbit polytopes
will not contain the entire orbit of any point under the action of the symmetric group,
unless we are multiplying points with all coordinates the same. Therefore, the product
of two nonempty orbit polytopes will never be normally equivalent to an orbit polytope
unless both polytopes are a single point.

Proposition 4.2. Let P ⊂ RI be a product of finitely many orbit polytopes. Then up to commu-
tativity of ·, P has a unique expression of the form

P = O(p1) · . . . · O(pk)

where pj ∈ RSj for 1 ≤ j ≤ k, and S1 t · · · t Sk is a partition of I into nonempty sets, and
O(pj) is not a single point unless |Sj| = 1.

4.2 Toward a Coproduct

Proposition 4.3. Let p ∈ RI where |I| = n. Let O = O(p) ⊂ RI be the orbit polytope of p and
let I = S t T. Suppose that F ≤ O is the face of O maximizing the indicator functional 1S of
S, where 1S(x) := ∑s∈S xs. Then there exist unique orbit polytopes O|S ⊂ RS and O/S ⊂ RT
such that

F = O|S · O/S.

We call O|S “O restricted to S,” and we call O/S “O contracted by S.” It is straight-
forward to show that if O is a product of finitely many orbit polytopes, a version of
Proposition 4.3 still holds. That is, the 1S-maximal face of O decomposes as O|S · O/S,
where O|S is a finite product of orbit polytopes that lives in RS and O/S is a finite
product of orbit polytopes that lives in RT.
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4.3 Species

Let Set be the category of sets with arbitrary morphisms, and let Set× be the category of
finite sets with bijections.

Definition 4.4. A set species is a functor F : Set× → Set. If I is a finite set, then F maps
I to a set F[I] which can be considered to contain “structures of type F labeled by I.” If
σ : I → J is a bijection of finite sets, then F maps σ to a morphism F[σ] : F[I] → F[J]
which can be thought of as the map “relabeling the elements of F[I] according to σ.”

Definition 4.5. The set species of orbit polytopes, denoted OP, maps a finite set I to the
set OP[I] of finite products of orbit polytopes living in RI. For a bijection of finite sets
σ : I → J, we get the map OP[σ] : OP[I] → OP[J] induced from the isomorphism from
RI to RJ relabelling the basis vectors {ei : i ∈ I} of RI according to σ.

We have seen that orbit polytopes up to normal equivalence are in bijection with
compositions. It is interesting to consider the species of orbit polytopes up to normal
equivalence.

Definition 4.6. The set species of normal equivalence classes of orbit polytopes, denoted OP,
maps a finite set I to the set OP[I] of normal equivalence classes of finite products of
orbit polytopes in OP[I]. In other words, a general element of OP[I] has the form

Oα1,S1 · · · · · Oαk,Sk

where I = S1 t · · · t Sk and αi is a composition of |Si| for all i.

Let Comp be the set species of compositions where Comp[I] is the set of integer
compositions of |I| and Comp[σ] = id for all bijections σ : I → J. Let Ĉomp be the result
of removing compositions with one part from Comp[I] when |I| ≥ 2, so Ĉomp[I] for
|I| ≥ 2 is the set of compositions of |I| with more than one part. Define Ĉomp[∅] := ∅.

Proposition 4.7. The species OP is isomorphic to E ◦ Ĉomp, where E is the exponential species
and ◦ denotes composition of species (see [2]).

The first few terms of the generating function for OP are

OP(t) = 1 + t + 2
t2

2!
+ 7

t3

3!
+ 29

t4

4!
+ 136

t5

5!
+ . . .

4.4 Hopf Monoid

Definition 4.8. A Hopf monoid in set species is a set species H equipped with a product
µ = {µS,T : H[S]×H[T] → H[I]} and a coproduct ∆ = {∆S,T : H[I] → H[S]×H[T]}
where S and T are any pair of disjoint finite sets and I = S t T. These operations must
satisfy naturality, unitality, associativity, and compatibility axioms (see [2, 1]). A Hopf
monoid in set species is connected if |H[∅]| = 1.
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Proposition 4.9 (OP is a Hopf submonoid of GP). Define a product and coproduct on OP as
follows:

• The product is a collection of maps µ = {µS,T : OP[S]×OP[T] → OP[I]} for all ordered
partitions of a finite set I into finite sets S and T. If O ∈ OP[S] and O′ ∈ OP[T], then
their product is

µS,T(O,O′) := O · O′ ∈ OP[I]

as defined in Definition 4.1.

• The coproduct is a collection of maps ∆ = {∆S,T : OP[I] → OP[S] × OP[T]} for all
ordered partitions of a finite set I into finite sets S and T. If O ∈ OP[I], then its coproduct
is

∆S,T(O) := (O|S,O/S) ∈ OP[S]×OP[T],

where O|S and O/S are the restriction and contraction discussed in Proposition 4.3.

These operations turn the set species OP into a connected Hopf submonoid of GP, where GP is
the Hopf monoid of generalized permutahedra defined in [1].

Proposition 4.10 ([1]). Taking normal equivalence classes respects the product and coproduct of
OP defined in Proposition 4.9.

Corollary 4.11. The set species OP of normal equivalence classes of orbit polytopes forms a
connected Hopf monoid under the induced product and coproduct from OP.

As a consequence of Proposition 4.2, we get that OP is a free commutative Hopf
monoid generated under multiplication by elements Oα,I where I is some finite set and
α is an integer composition of |I| that has more than one part if |I| > 1. This characterizes
the product of OP. The coproduct of OP also has a very nice formulation in terms of
compositions. This formulation uses two standard operations.

Definition 4.12. The concatenation of compositions β = (β1, . . . , βk) and γ = (γ1, . . . , γ`)
is the composition

β · γ := (β1, . . . , βk, γ1, . . . , γ`).

Definition 4.13. The near-concatenation of nonempty compositions β = (β1, . . . , βk) and
γ = (γ1, . . . , γ`) is the composition

β� γ := (β1, . . . , βk + γ1, . . . , γ`).

Proposition 4.14. Let I be a finite set with |I| = n and let α be an integer composition of n, so
Oα ∈ OP[I]. Then if I = S t T we have

∆S,T(Oα) = (Oβ,Oγ)

where β and γ are the unique pair of compositions satisfying

(i) β is a composition of |S| and γ is a composition of |T|, and

(ii) either β · γ = α or β� γ = α.
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4.5 Hopf Algebra

Given a Hopf monoid in set species, we can obtain a Hopf algebra by applying first a
linearization functor and then a Fock functor [2, §15]. The first Fock functor produces
the Hopf algebra⊕

n≥0
Span{isomorphism classes of elements of H[I] where |I| = n}

where isomorphisms are given by relabeling maps in the species. Applying this con-
struction to OP results in a Hopf algebra of normal equivalence classes of orbit poly-
topes. Like OP, this Hopf algebra can be described in terms of compositions. We will
use the notation |α| to denote the sum of the parts of a composition α.

Theorem 4.15.

(i) Let A be the set containing all integer compositions with more than one part and the unique
composition of 1. Consider the commutative algebra Comp generated freely by A. Let α ∈ A
and define a coproduct ∆ : Comp→ Comp⊗ Comp by

∆(α) := ∑
β·γ=α

or
β�γ=α

(
|α|
|β|

)
β⊗ γ.

This makes Comp into a graded Hopf algebra.

(ii) Comp is isomorphic to the Hopf algebra of normal equivalence classes of orbit polytopes.

5 The Character Group of OP

Studying the character group of a Hopf monoid can lead to surprising connections,
as seen for the cases of permutahedra and associahedra in [1]. To begin, let H be a
connected Hopf monoid in set species, and let k be a field.

Definition 5.1. A character ζ : H → k is collection of natural maps {ζ I : H[I] → k} for
each finite set I such that

(i) ζ∅ : H[∅]→ k is the map sending 1 ∈ H[∅] to 1 ∈ k, and

(ii) if I = S t T, then for any x ∈ H[S] and y ∈ H[T] we have

ζ I(µS,T(x, y)) = ζS(x)ζT(y).

Let X(H) be the set of all characters on H.
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Definition 5.2. The convolution of ζ, ψ ∈ X(H) is defined for x ∈ H[I] to be

(ζ ? ψ)I(x) := ∑
I=StT

ζS(x|S)ψT(x/S)

where the sum is taken over all ordered partitions of I into sets S and T.

This convolution product gives X(H) a group structure [1, Theorem 8.2]. Inverses
of characters can be obtained by composing the character with the antipode map (Sec-
tion 6). We will prove that the character group of OP is related to the Hopf algebra
of noncommutative symmetric functions (NSym). This is the graded dual of the Hopf
algebra QSym of quasisymmetric functions. One basis for NSym is given by the noncom-
mutative ribbon functions {Rα} which are indexed by integer compositions α. This basis
is dual to the fundamental basis of QSym and has the product

RβRγ = Rβ·γ + Rβ�γ. (5.1)

A detailed explanation of the Hopf structures of QSym and NSym can be found in [4].

Definition 5.3. The completion NSym of NSym is the ring k[[{Rα}]] of generating func-
tions of the form ∑α cαRα where the sum is over compositions α. The product in this
ring is induced from the product of the Rα given in (5.1).

As with standard power series, one can show that an element of NSym is invertible if
and only if c∅ 6= 0, and that the invertible elements form a group under multiplication.

Definition 5.4. Define G to be the collection of invertible elements in NSym with the
properties that c∅ = 1 and n!c(n) = cn

(1) for all n > 1.

It is straightforward to check that G is a subgroup of the invertible elements of NSym.

Theorem 5.5. The character group X(OP) is isomorphic to G.

Proof. (Details of the proof are omitted.) Let ζ ∈ X(OP). For a positive integer n and
a composition α of n, let bα = ζ[n](Oα,[n]). Then for each α, the corresponding bα can
have any value in k subject to the restrictions that b∅ = 1 and b(n) = bn

(1) for n > 1. The
isomorphism is given by

ζ 7−→∑
α

bα

|α|! Rα,

where the sum is taken over all integer compositions α.
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6 The Antipode of OP

The antipode is an important map in the study of Hopf monoids and Hopf algebras.
It is analogous to the group map sending g to g−1. One application of the antipode is
inversion of characters in the character group. In combinatorics, a nice interpretation of
the antipode can lead to interesting reciprocity results, as in [1, §18].

A Hopf monoid in set species does not have enough structure to define an antipode,
so we must introduce the notion of Hopf monoids in vector species. Let Vec be the
category of vector spaces with linear maps.

Definition 6.1. A vector species F is a functor from Set× → Vec. If I is a finite set, then F
maps I to a vector space F[I]. If σ : I → J is a bijection of finite sets, then F maps σ to a
linear map F[σ] : F[I]→ F[J].

Definition 6.2. The vector species of normal equivalence classes of orbit polytopes, denoted OP,
maps a finite set I to the k-vector space OP[I] consisting of formal linear combinations
of products of normal equivalence classes of orbit polytopes in RI. In other words, this
is the linearization of the set species OP.

Analogous to Definition 4.8 is the notion of a Hopf monoid in vector species. The product
and coproduct of OP extend linearly to a product and coproduct on OP, which makes
OP into a Hopf monoid in vector species. Recall that Proposition 4.2 implies that OP[I]
has a basis given by products of the form

Oα1,S1 · . . . · Oαk,Sk

as given in Definition 4.6, with the constraint that if |Si| > 1, then αi must have more
than one part.

Definition 6.3 (Takeuchi’s formula). The antipode of a Hopf monoid H in vector species
is a collection of maps {sI : H[I]→ H[I]} given by

sI(x) =
|I|

∑
k=1

(
∑

(S1,...,Sk)�I
(−1)kµS1,...,Sk ◦ ∆S1,...,Sk(x)

)
where x ∈ H[I] and the sum is taken over ordered partitions (S1, . . . , Sk) of I such that
all of the Si are nonempty.

Definition 6.3 can be interpreted for orbit polytopes using compositions.

Proposition 6.4. Let Oα ∈ OP[I], so α is an integer composition of |I|. Then we have

sI(Oα) =
|I|

∑
k=1

(
∑

(S1,...,Sk)�I
(−1)kOβ1,S1 · . . . · Oβk,Sk

)
.

For each (S1, . . . , Sk) � I, the compositions β1, . . . , βk are the unique compositions satisfying
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(i) βi is a composition of |Si| for all i, and

(ii) α can be obtained from the βi’s by some sequence of concatenations and near-concatenations,
that is,

α = β1� . . .�βk

where each occurrence of � is replaced with either concatenation · or near-concatenation �.

Ardila and Aguiar showed that for generalized permutahedra, the antipode has the
cancellation-free and grouping-free formula

sI(P) = (−1)|I| ∑
F≤P

(−1)dim FF

where P ⊂ RI is a generalized permutahedron and the sum is taken over all faces F of P
[1]. One future direction of work could be to interpret this formula for orbit polytopes,
and to find a grouping-free formula for the antipode.
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