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Abstract. We give an explicit combinatorial formula for the Laurent expansion of any
cluster variable of any generalized cluster algebra from a triangulated orbifold, with
respect to any initial seed, and associate frieze patterns to orbifolds.
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1 Introduction

Our main result is Theorem 2, a definition of snake graphs from orbifolds that gives
combinatorial formulas for the Laurent expansions of cluster variables, with respect
to any initial seed, for generalized cluster algebras from orbifolds. In Propositions 1
and 2, we extend this definition to closed curves and generalized arcs, respectively. This
construction also allows us to associate frieze patterns to orbifolds. Propositions 3 and 4
give some properties of these frieze patterns. This work is motivated by, but does not
use, unpublished work of Gleitz and Musiker [9].

2 Chekhov-Shapiro Algebras

In 2014, Chekhov and Shapiro defined an extension of ordinary cluster algebras [8]
without the restriction that exchange polynomials be strictly binomial [3]. Often known
as “generalized cluster algebras”, we refer to these as Chekhov-Shapiro algebras or simply
CS algebras. The motivation for introducing these algebras came from a desire to extend
existing work on the Teichmüller spaces of Riemann surfaces with holes and orbifold
points of order two and three to the more general case of Riemann surfaces with holes
and orbifold points of arbitrary order [2].

For a fixed semifield (P,⊕, ·), let F be isomorphic to QP[x1, . . . , xn].

Definition 1. A generalized labeled seed inF is a quadruple (x, y, B, Z) where x = (x1, . . . , xn)
is a free generating set for F , y = (y1, . . . , yn) is an n-tuple with elements in P, B = (bij) is a
skew-symmetrizable n× n integer matrix, and Z = (z1, . . . , zn) is a tuple of exchange polyno-
mials. We refer to x as the cluster of (x, y, B), y as the coefficient tuple, and B as the exchange
matrix. The elements x1, . . . , xn are the cluster variables of (x, y, B) and y1, . . . , yn are its
coefficient variables.
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Mutation in direction k reverses the order of coefficients in the exchange polyno-
mial zk and does not modify the other exchange relations. When all elements of Z are
binomials, generalized mutation coincides with ordinary mutation.

Definition 2. Let Tn be the n-regular tree graph, where each vertex has adjacent edges labeled
by {1, . . . , n}. A generalized cluster pattern is a map χ : v → Σv that sends each vertex v
of Tn to a labeled generalized seed Σv = (xv, yv, Bv, Z), such that Σv′ = µkΣv if and only if
Tn contains an edge labeled k between Σv′ and Σv. The generalized cluster algebra associated
with χ is defined as A(χ) = ZP [x : x ∈ ⋃v xv] where {x : x ∈ ⋃v xv} is the set of all cluster
variables appearing in seeds that are (generalized-)mutation-equivalent to Σv.

Chekhov and Shapiro proved that their algebras exhibit the Laurent Phenomenon -
i.e., the cluster variables can be expressed in terms of any cluster as a Laurent polynomial
with non-negative coefficients. They also prove positivity for a subclass of their algebras
from orbifolds; here, we offer an explicit combinatorial proof for the same subclass.

3 Cluster Algebras from Orbifolds

An orbifold is a generalization of a manifold where the local structure is given by quo-
tients of open subsets of Rn under finite group actions. In parallel with the classification
of cluster algebras associated with triangulated surfaces [6, 7], Felikson, Shapiro, and Tu-
markin established both a notion of triangulating orbifolds and a classification of cluster
algebras from orbifolds [4]. In this section, we briefly review some nomenclature and
definitions for triangulations of orbifolds that will be used in later sections. For more
details and many examples, we refer the reader to the original paper [4].

Definition 3. An orbifold O is a triple (S, M, Q), where S is a bordered surface, M is a finite
set of marked points, and Q is a finite set of orbifold points, such that: no point is both a marked
point and an orbifold point (i.e., M ∩ Q = ∅); all orbifold points are interior points of S; and
each boundary component of S contains at least one marked point. For notational convenience,
∂O is often used to refer to ∂S.

Each orbifold point has an associated order. Unlike in [5] where all orbifold points
are order 2 or 1

2 , our orbifold points are associated with positive integer orders, p ≥ 2.

Definition 4. An arc γ on an orbifold O = (S, M, Q) is a non-self-intersecting curve in S with
endpoints in M that is otherwise disjoint from M, Q, and ∂O. Curves that are contractible onto
∂O are not considered arcs. Arcs are considered up to isotopy class. An arc which cuts out an
unpunctured monogon with exactly one point in Q is called a pending arc (sometimes drawn as
an arc between the marked and orbifold points) , while all other arcs are called ordinary arcs.

We will also consider generalized arcs, which have the same restrictions except are
allowed self-intersections.
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Definition 5. Two arcs are considered compatible if their isotopy classes contain non-intersecting
representatives. A triangulation is a maximal collection of pairwise compatible arcs.

Although our ultimate goal is to construct snake graphs directly from the triangu-
lated orbifold rather than lifting to some cover, our proof requires considering a partic-
ular covering space [3, 11] of an orbifold with a single orbifold point of order p:

Definition 6. Let Σn be an (n + 1)-gon containing one orbifold point of order p with vertices
labeled v1, . . . , vn+1 in counterclockwise order, Σ̃n be a regular p(n+ 1)-gon with vertices labeled
v1, v2, . . . , vpn+p in counterclockwise order, and T be a triangulation of Σn. The triangulation T̃
is constructed via the following procedure:

• For arcs in T with endpoints vi 6= vj, add the p arcs in T̃ with endpoints vi+k(n+1) and
vj+k(n+1), with k ∈ [p− 1]. For loops based at vi, add arcs from vi+k(n+1) to vi+(k+1)(n+1).

• If p > 3, T̃ will still have a central p-gon that hasn’t been fully triangulated. Denote the
vertices of this central polygon as w1, . . . , wp and add arcs with endpoints wi and wi+2
(modulo p). A complete triangulation can be obtained by iteratively repeating this step
until the central polygon has been reduced to a triangle.

We refer to Σ̃n as either the Zp-orbit space of Σ̃n or the p-fold covering.

An example of the 3-fold and 4-fold coverings for a triangle with a single orbifold
point are shown in Figure 1. Note that for all k ∈ [p− 1], restricting T̃ to the vertex set
{v1+k(n+1), . . . , v(n+1)+k(n+1)}, restoring the orbifold point, and then identifying vi+k(n+1)
and v(n+1)+k(n+1) yields a copy of T.

The case of cluster algebras from surfaces (in our notation, Q = ∅) is well stud-
ied. The correspondence between surfaces and cluster algebras is established by Fomin-
Thurston.

Theorem 1 (Fomin-Thurston [7]). Given a surface with marked points, (S, M), there exists a
unique cluster algebra A = A(S, M) with the following properties: (1) the seeds are in bijection
with tagged triangulations of (S, M); (2) the cluster variables are in bijection with tagged arcs in
(S, M); and (3) the cluster variable xγ corresponding to arc γ is given by the lambda length of
γ, in terms of some initial triangulation.

In this dictionary, mutation of cluster variables in A is equivalent to flipping arcs in
the triangulation T. An arc τ in T acts locally as a diagonal in a quadrilateral. Thus, the
result of flipping τ in T is a new triangulation, T′ = (T − {τ}) ∪ {τ′} where τ′ is the
other diagonal of the quadrilateral surrounding γ.

In [3], Chekhov and Shapiro show that flipping pending arcs induces a trinomial
exchange relation, which allows them to give an algebraic structure to the dynamics of
arcs on orbifolds. We set λp to be 2 cos(π/p).
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Figure 1: An example of a triangulated orbifold with a single orbifold point of order p
(left) and the covering spaces for p = 3 (middle) and p = 4 (right).

Lemma 1 (Chekhov-Shapiro [3]). Theorem 1 also holds for an orbifold O where A(O) is a
CS algebra, with all exchange polynomials being either zi(u) = u + 1 (for ordinary arcs) or
zi(u) = u2 + λpu + 1 (for pending arcs incident to orbifold points of order p).

4 Snake Graphs

Let T = {τ1, . . . , τn} be a triangulation of O. Let {τn+1, . . . , τc} be the boundary arcs of
O. For now, we work with orbifolds without any punctures, but we expect our results
to hold when we introduce punctures.

Given an arbitrary arc γ on O with triangulation T, we can use the Ptolemy relation
to write γ as a rational function in terms of {τ1, . . . , τc}. However, determining an
expansion via this method can be computationally challenging. To simplify this process,
we generalize the snake graph construction due to Musiker, Schiffler, and Williams [13],
obtaining a combinatorial formula for the expansion in terms of the perfect matchings
of a particular weighted graph, called a snake graph.

Fix an arbitrary triangulation T of O and arc γ (either ordinary, pending, or gener-
alized). We recursively construct the snake graph GT,γ by gluing together square tiles
determined by the intersections of γ with arcs of T. Further, if γ is a closed curve, we
can similarly construct a band graph.

4.1 Tiles

If γ = τi for 1 ≤ i ≤ n (recall the final c− n arcs are boundary arcs), then Gγ is a single
edge labeled with τi. Otherwise, choose some orientation for γ. Since T is a maximal set
of non-intersecting arcs, in this case γ will cross at least one arc in T.
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Let ρ1, . . . , ρm be the set of internal arcs of T that γ crosses, given a fixed orientation.
For each ordinary arc ρi that γ crosses, we construct a square tile Gi by taking the two
triangles that ρ borders and gluing them along ρ, such that either both have either the
same or opposite orientation as in O. We say that the former case has relative orientation
+1 and the latter case has relative orientation −1, denoted as rel(Gi) = ±1.

a
b

c
dρi

b
a

d
c

ρi

If ρi is a pending arc encircling an orbifold point of order p, then it is only incident to
one triangle inO. As inspiration for the other triangle, we look to the p-fold cover around
this orbifold point. For p > 3, this surface is not triangulated since we have a central
ideal p-gon. However, for a regular p-gon, with each side length ρi, the length of the
diagonal that bypasses exactly one vertex ( a “2-diagonal”) is sin(2π/p)

sin(π/p) ρi = 2 cos(π/p)ρi.
Recall this is the same parameter that appears when we mutate pending arcs. We use
this 2-diagonal in the p-fold cover as an auxiliary arc to define a second triangle that ρi
borders, as on the left hand side below.

ρi

ρi ρi

ρi

ρiλp

a

b

f ρi

gρi
ρi

On the right, { f , g} = {1, λp} as sets. We define the orientation of the tile based on
whether the orientation of the triangle with edges a, b, ρi matches or does not match that
on the surface. We determine f and g by the relative orientation of γ’s path, as below.
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The other labels of the tile labeled 2 will depend on the local configuration around
2. In the configurations above, 2 could be a either ordinary arc or a pending arc. If
2 is a pending arc, then we would need to use such a configuration twice. We use
one configuration for both crossings of 1 and one crossing of 2, and the second for one
crossing of 1 and both crossings of 2. Below is one example of such gluing - we could
do something similar if γ matched the orientation in the right hand diagram.

××
21
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=
⊕××

21

a

××
21
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1 1
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In the case of ordinary arcs, crossing a pending arc produces two square tiles since it
involves two actual crossings. When constructing the snake graph for a generalized arc
γ, however, it’s possible to have only one crossing. In this case, the following rules are
used to determine f and g:

2 a

1

× 2 a

1

×

1 1λpx1
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x1

xa

x2

λpx1

1 1x1
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4.2 Gluing GT,γ

We then glue these square tiles together, according to the following rule: when crossing
two consecutive arcs τi and τi+1, we glue Gi and Gi+1 along the shared edge labeled τ[i],
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using the appropriate planar embeddings so rel(T, Gi) 6= rel(T, Gi+1). Note that this rule
does not differentiate between ordinary and pending arcs.

Because the choice of relative orientation for the first tile, G1, isn’t fixed, there are two
valid planar embeddings of GT,γ for any γ. Our cluster expansion formula produces the
same result for either choice of planar embedding, so the choice is unimportant.

Finally, we can construct generalized band graphs using the same ideas. Band graphs
calculate the length of closed curves in a surface.s. Choose a point p on γ such that p
does not lie on any arc in T or at an intersection of γ with itself. For simplicity, we
require p to not be in the interior of a pending arc. Then, construct the snake graph
for γ, picking an orientation and starting and ending at p. Since the first and last tile
correspond to arcs bordering the same triangle, they will have a common edge. We glue
the first and tile along this edge. This gives a graph which resembles an annulus or a
Mobius strip. Statistics associated to a band graph are the same as for snake graphs

4.3 Cluster Expansion Formulas

To state the cluster expansion formula, we need the following definition:

Definition 7 ([13]). Each snake graph has exactly two perfect matchings which use only bound-
ary edges. One of these matchings uses the south edge of the first tile and the other uses the west
edge of the first tile. By convention, we refer to the boundary matching which uses the west edge
as the minimal matching, P−, of P.

For an arbitrary perfect matching P of GT,γ, we sometimes consider the symmetric
difference P 	 P−. For all P, this symmetric difference consists of a set of potentially
disjoint cycles. We now define some statistics associated to γ and GT,γ, following [13]:

• The crossing monomial is cross(T, γ) = ∏τi∈T xe(xi,γ)
i , where e(xi, γ) is the minimal

number of crossings of γ with arcs in the isotopy class of τi.

• The weight x(P) of a perfect matching P of GT,γ is the product of all its edge weights
- i.e., if the edges of P has labels τi1 , . . . , τik , then x(P) = xτi1

· · · xτik
.

• The height monomial y(P) is y(P) = ∏τi∈T ymi
i , where mi is the multiplicity of tiles

labeled i enclosed by cycles of P	 P−.

We are then able to establish the following theorem for Laurent expansions of arcs
(both ordinary and pending), a slightly more general version of the theorem from [13].

Theorem 2. Let O = (S, M, Q) be an arbitrary orbifold with triangulation T and A be the
corresponding CS algebra with principal coefficients with respect to ΣT = (xT, yT, BT). For an
arc γ with snake graph GT,γ, the Laurent expansion of xγ with respect to ΣT is

[xγ]
A
ΣT

=
1

cross(T◦, γ) ∑
P

x(P)y(P)



8 Esther Banaian and Elizabeth Kelley

where the summation is indexed by perfect matchings of GT,γ.

Proposition 1. Let γ be a generalized arc in O. If γ has a contractible kink, let γ′ be the same
curve with the kink removed. Then, xγ = (−1)xγ′ . Otherwise, xγ = 1

cross(T◦,γ) ∑P x(P)y(P)
where the summation is indexed by perfect matchings of GT,γ.

Proposition 2. Let γ be a a closed curve on O. If γ is contractible, then xγ = −2. Otherwise,
Theorem 2 also holds where GT,γ is a generalized band graph.

Example 1. The table below shows snake graphs for a variety of curves on the triangu-

lated orbifold corresponding to A =

(
x, y,

[
0 −1
1 0

]
, (1 + µu + u2, 1 + λu + u2)

)
.

1 2

γ

× ×
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1
x2

1x2
(x2

ax2
1y4

1y2
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ax1x2y3
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ax2y3
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1)
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u

v

u′

v′

xγ3 =
1

x1x2
(xax2

1 + λy2x2
ax1 + y2

2x3
a+

µy1y2
2x2

ax2 + y2
1y2

2xax2
2)

xγ4 =
1

x1x2
(x2

1 + λy2xax1 + y2
2x2

a+

µy1y2
2xax2 + y2

1y2
2x2

2)

Labels for arcs in the initial triangulation are only shown in the first orbifold dia-
gram, but are consistent throughout. Snake graphs are shown for each (dashed) curve
γi, with one perfect matching (and the corresponding term in the Laurent expansion)
highlighted. Both γ1 and γ2 are cluster variables of A, obtained via the respective muta-
tion sequences µ1 and µ2µ1.

The second half of this example illustrates the extension of our results to generalized
arcs and closed curves. Since γ3 and γ4 cross the same arcs in the same orientation, the
shapes of the two associated graphs are the same. However, in the band graph associated
to γ4, we identity u with u′ and v with v′. In each of these graphs, we have highlighted
the maximal matching.
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Note that in each of these examples, our expression for xγi is given after canceling
a mutual factor from the crossing monomial and the numerator. Although the exact
mutual factor depends on the curve being considered, cancellation of this type occurs
whenever we cross pending arcs.

5 Frieze Patterns

Periodic frieze patterns of positive integers have been shown to be in bijection with
triangulated surfaces; those with a finite number of rows correspond to triangulated
polygons, while those with infinitely many rows correspond to triangulations of annuli.

Holm and Jørgensen classified a certain family of finite frieze patterns associated
with polygon dissections [10]. A polygon dissection is a generalization of a triangulation,
in the sense that it is a (not necessarily maximal) set of pairwise non-intersecting arcs on
a surface. The entries in these frieze patterns are positive integer combinations of λp for
finitely many values of p. Our snake graphs from orbifolds allow us to construct infinite
frieze patterns in the spirit of Holm and Jørgensen and to recover some of their finite
frieze patterns.

Definition 8. A (finite) frieze pattern is a (finite) set of infinite rows, where each row is offset
from its neighbors in such a way that the entries of every other row form columns. The first row
consists of all zeroes and the second row consists of all ones. The defining property of a frieze

pattern is that every diamond
a

b c
d

satisfies the condition bc− ad = 1.

Note that once we specify the first nontrivial row, the entire frieze pattern is deter-
mined. We refer to this first nontrivial row as the quiddity row.

We use the following indexing to refer to entries of a frieze pattern. We can also refer
to entries in the row of 0’s as (i, i) and in the row of 1’s as (i, i + 1).

0 0 0 0 0
1 1 1 1 1

(1, 3) (2, 4) (3, 5) (4, 6) (5, 7)
(1, 4) (2, 5) (3, 6) (4, 7) (5, 8)

(0, 4) (1, 5) (2, 6) (3, 7) (4, 8)
(0, 5) (1, 6) (2, 7) (3, 8) (4, 9)

...

While there are several combinatorial interpretations of entries in frieze patterns of
positive integers, we can also interpret each entry as giving the length of an arc on
the triangulated surface corresponding to the frieze pattern. In this interpretation, the
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length of all boundary arcs and arcs in the triangulation is set to 1. In a finite frieze
pattern associated to a triangulation of an n-gon, entry (i, j) corresponds to the length
of the diagonal between vertices ī and j̄ where ī ≡ i (mod n). There is a similar story
for infinite frieze patterns, except we must keep track of how many times an arc winds
around the annulus. Moreover, the frieze pattern only measures peripheral arcs along the
outer boundary (although we could also make a frieze pattern with respect to the inner
boundary). A peripheral arc is the result of concatenating multiple boundary arcs from
the same boundary. In a polygon, all arcs are peripheral. The following Lemma is part
of a larger theorem in [12], and holds for more general surfaces than discussed there.

Lemma 2. A frieze pattern corresponding to a triangulated surface encodes a map on peripheral
arcs on the surface which respects the Ptolemy relation.

Our snake graphs allow us to measure the length of arcs in a triangulated orbifold
in terms of the lengths of the arcs in the triangulation. We set all of these lengths to 1;
however, we could also recover a frieze pattern of Laurent polynomials by leaving the
lengths as variables.

We construct F (O), a frieze pattern associated to a triangulated orbifold, O. We
distinguish one boundary to work with respect to.

• Let γ1, . . . , γm be the set of peripheral arcs along one boundary component which
are the result of concatenating exactly two boundary arcs.

• Let X(γi) be the sum of perfect matchings of Gγi with all xj = yj = 1.

• The frieze pattern F (O) is determined by a quiddity row given by repeating
X(γ1), X(γ2), . . . , X(γm) infinitely many times.

By Lemma 1, we know that an orbifold surface O encodes a CS algebra A, so some
cluster variables and other elements of A are lambda lengths of arcs on O. By Theorem 2
and Proposition 1, we can express these elements of A in terms of perfect matchings.
This implies the following interpretation of these frieze patterns:

Proposition 3. The entries in F (O) are specializations of elements of A(O), where we set all
initial variables xi and yi to 1.

Because our edge weights are all positive, we also observe that:

Corollary 1. If p1, . . . , pk are the orders of the orbifold points in O, then all entries of F (O) are
positive integer multiples of 1, λp1 , . . . , λpk .

Our earlier example illustrates that, in the case of an orbifold with two orbifold
points, we can have arcs which wind around the two points arbitrarily many times. The
same is true for a surface with multiple boundary components, such as an annulus, or a
surface with punctures. This leads us to the following.
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Proposition 4. The frieze pattern F (O) is finite if and only if S is homeomorphic to a disk,
|Q| = 1 and M ∩ ∂S = M. In particular, if S has n marked points on the boundary and the
unique orbifold point is order p, then F (O) has np− 3 nontrivial rows.

Note that the orbifolds which give finite frieze patterns are exactly those whose cover
is an unpunctured polygon. The triangulation of the orbifold lifts to a polygon dissection
of the cover. In these cases, the frieze pattern we construct from the orbifold matches
the frieze pattern Holm and Jørgensen associate with the cover. This is the case for the
left hand frieze below, which is the frieze pattern associated to the orbifold in Figure 1
where the orbifold point has order 4 (λ4 =

√
2). This frieze pattern is 3-periodic and by

Proposition 4 we know it has 9 nontrivial rows.

0 0 0 0
1 1 1

1 2 3 +
√

2 1
1 5 + 2

√
2 2 +

√
2

1 +
√

2 2 +
√

2 3 + 2
√

2 1 +
√

2

0
1 1

3 + 2
√

2
16 + 12

√
2 16 + 12

√
2

93 + 66
√

2

The right hand frieze is associated to the orbifold in Example 1, with both orbifold
points again order 4. Since this orbifold has two orbifold points, we know that there are
infinitely many rows. This frieze pattern is 1-periodic, with the quiddity row determined
by the bottom left arc in Example 1, which is the concatenation of arc a with itself.

Meanwhile, [1] demonstrated a set of invariants for periodic, infinite frieze patterns.
Given an infinite frieze pattern F , let n be the minimal period of the quiddity row.
Then, using our indexing above and fixing k ≥ 1, the difference (j, j + nk + 1) − (j +
1, j + nk− 1) is constant for all j. These parameters are referred to as growth coefficients.
In the case of positive integers, where the frieze patterns arise from triangulations of
annuli, [12] gave a geometric interpretation for these growth coefficients. Specifically,
they showed that the k-th growth coefficient corresponds to the length of a closed curve
which winds around the annulus k times. We conjecture that our generalized band
graphs will allow us also to keep track of growth coefficients of the frieze patterns from
triangulated orbifolds.

Conjecture 1. Generalized band graphs determine the growth coefficients of infinite friezes aris-
ing from orbifolds.

As evidence to support our conjecture, observe that the first growth coefficient for
the infinite frieze above is 3 + 2

√
2, which agrees with xγ4 from Example 1 when the

Laurent expansion is evaluated at xi = 1 and λ = µ =
√

2.
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