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Cluster algebras and binary words
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Abstract. We establish a connection between binary subwords and perfect matchings
of a snake graph, an important tool in the theory of cluster algebras. Every binary
expansion w can be associated to a piecewise-linear poset P and a snake graph G. We
describe bijections from the subwords of w to the antichains of P and to the perfect
matchings of G. We also construct a tree structure called the antichain trie which is
isomorphic to the trie of subwords introduced by Leroy, Rigo, and Stipulanti.
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1 Introduction

A planar graph called the snake graph appears naturally in the study of cluster alge-
bras [6]. An early version of the snake graph is a bipartite graph which is dual to a
polygon triangulation and was studied by Propp et al. along with other equivalent com-
binatorial models [15]. Musiker, Schiffler, and Williams then used the snake graphs to
study positivity and bases of cluster algebras from surfaces [12, 13]. The theory of ab-
stract snake graph was developed further by Çanakçı and Schiffler [3]. The snake graphs
are connected to various mathematical objects, including matchings of triangles [1, 15,
8], submodules of a string module [2, 13, 5], T-paths [16, 7], 0-1 sequences called globally
compatible sequences (GCSs) [9], matchings of angles and minimal cuts [17], intervals in
the weak order determined by a Coxeter element [5], continued fractions [4], and Jones
polynomials [10]. We add another item to this list by providing a connection between
snake graphs and base-2 expansions of positive integers.

In this paper, let a binary word be a finite (possibly empty) sequence of letters on
the alphabet {0, 1} starting with 1. Let a subword of a binary word be a “scattered"
subsequence which is itself a binary word.

To every nonempty binary word w = w1w2 . . . wd of length d we associate (the Hasse
diagram of) a piecewise-linear partially ordered set (poset) P as follows. The elements of
P are labeled P1 = 1, . . . , Pd = d, arranged from left to right in the Hasse diagram of P,
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and there is an edge between Pi−1 and Pi. For i ≥ 2, if wi = 1 (respectively, if wi = 0)
then the edge between Pi−1 and Pi is of slope 1 (respectively, −1), so that we have the
covering relation Pi−1 l Pi (respectively, Pi−1 m Pi). See Figure 1.

An antichain is a subset A = {A1, A2, . . . , Ar} of a poset such that no two distinct
elements in A are comparable. For example, the subsets {1, 3, 6}, {1, 4}, and {2, 6} of
the poset whose Hasse diagram is given in Figure 1 are antichains, while {2, 4} is not.
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Figure 1: The Hasse diagram associated to the word 101110.

In [11, Sec. 2], Leroy, Rigo, and Stipulanti introduce a specific construction of a prefix
tree (called trie of subwords) which is a binary tree that is convenient for counting distinct
subwords occurring in a given word w. We use this same construction to define a tree we
call antichain trie to study the antichains of the poset P corresponding to w. We associate
each node v of the antichain trie to an antichain A(v) of P in such a way that moving
from a node v to its left child replaces Pi in A(v) with Pi+1 (where i is the largest integer
in A(v)) and moving from a node v to its right child adds a new element Pi to A(v)
(where i is larger than every integer in A(v)).

Proposition 1.1 (Proposition 3.2). The nodes of the antichain trie are distinct antichains.

Next, we show that this antichain trie contains all antichains by giving a bijection
between the subwords and the antichains.

Theorem 1.2 (Theorem 4.3). Given a nonempty binary word w and its corresponding piecewise-
linear poset P, there is a bijection between the subwords of w and the antichains of P.

It is known that one can associate a binary sequence of length d− 1 to a snake graph
with d tiles (see Definition 5.3). So, given a binary word w = w1 w2 . . . wd, we associate
(w2, . . . , wd) to a snake graph G(w) and present a bijection from the subwords of w to
the perfect matchings of G(w).

Theorem 1.3 (Theorem 5.4). The subwords of a binary word w are in bijection with the perfect
matchings of its corresponding snake graph G(w).

The paper is organized as follows. In Section 2, we recall the construction of the
trie of subwords given by Leroy, Rigo, and Stipulanti. In Section 3, we introduce the
antichain trie. We define a map from the antichains to the subwords and prove that
it is a bijection in Section 4. In Section 5, we give the necessary snake graph theory
background and present a bijection between subwords and perfect matchings.
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2 Trie of subwords

Let w = w1 . . . wd be a nonempty binary word and consider the trie of (distinct) subwords
of w, denoted by T . It is a tree with the root denoted by ε. If u and ua are two subwords
of w with a being a one-letter subword, then ua is a child of u. This trie is also called a
prefix tree because all successors of a node have a common prefix. Note that, since w is a
binary word, the trie is a binary tree. For the rest of the section, we describe the specific
construction of T which is given in [11, Sec. 2].

Factor w into consecutive maximal blocks of 1’s and blocks of 0’s such that

w = 1n1︸︷︷︸
u1

0n2︸︷︷︸
u2

1n3︸︷︷︸
u3

0n4︸︷︷︸
u4

· · · 1n2j−1︸ ︷︷ ︸
u2j−1

0n2j︸︷︷︸
u2j

with j ≥ 1, n1, . . . , n2j−1 ≥ 1 and n2j ≥ 0. Let M be such that w = u1u2 . . . uM where uM
is the last non-empty block of zeroes or ones.

To construct the trie T , begin with a vertical linear tree Tw with nodes v0, . . . , vd. Let
Tw be rooted at ε = v0 and let node vi be the left child of node vi−1 for all i = 1, . . . , d.
Label the edges of Tw with the letters of w such that the edge between nodes vi−1 and vi
is labeled wi. We identify each node v by the path of edge labels from ε to v.

Starting from the bottom of the vertical linear tree Tw, we define a tree Tl for every
l ∈ {M− 1, . . . , 2, 1}. Each tree is rooted at the node u1 . . . ul1 if l is even and u1 . . . ul0 if
l is odd. First, let TM−1 be the (linear) subtree of Tw consisting of the last nM nodes.

We then attach a copy of TM−1 to each node (on the vertical tree Tw) of the form{
u1u2 . . . uM−21j, if uM−1 is a block of 1s
u1u2 . . . uM−20j, if uM−1 is a block of 0s

for j ∈ {0, 1 . . . , nM−1 − 1}.

Let the root of each copy of TM−1 be the right child of the node of Tw that this root is
attached to. This results in a (non-linear) tree T′w that is larger than Tw.

Let TM−2 be the subtree of this larger tree T′w such that its root is u1 . . . uM−21 if M− 2
is even and u1 . . . uM−20 if M− 2 is odd and TM−2 contains all the descendants of this
root. Then attach a copy of TM−2 to each node of the form{

u1u2 . . . uM−31j, if uM−2 is a block of 1s
u1u2 . . . uM−30j, if uM−2 is a block of 0s

for j ∈ {0, 1, ..., nM−2 − 1}.

Again, let the root of each copy of TM−2 be the right child of the node of Tw that this
root is attached to.

Let TM−3 be the subtree of this larger tree such that it is rooted at u1. . . uM−31 (resp.,
u1 . . . uM−30) if M− 3 is even (resp., odd) and TM−3 contains all descendants of this root.

Continue as such until after we attach a copy of T2. If n1 = 1 then no copy of T1 is
added (as in Figures 2 and 4 (left)). If n1 > 1 then a copy of T1 is added to each node of
the form 1j, j ∈ {0, 1, . . . , n1 − 1} (as in [11, Example 8]).
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When Tl is copied, keep its respective edge labels. The new edge connecting a copy
of Tl to the original vertical linear tree Tw has the same label as the edge (of Tw) above
the root of the original copy of Tl.

Example 2.1. Figure 2 (left) shows the complete trie of subwords for the word 101110. Since
w = 11︸︷︷︸

u1

01︸︷︷︸
u2

13︸︷︷︸
u3

01︸︷︷︸
u4

, we have M = 4. The subtree T3 is the sole diamond node on Tw because

T3 is rooted at the node u1u2u30. We then attach a copy of T3 to the nodes u1u21j, j ∈ {0, 1, 2}.
The root of T2 is the node u1u21 (the square node) and we attach a copy of T2 to the node
u10j, j ∈ {0}. Lastly, because n1 = 1, no copy of T1 is added. See also Figure 4 (left) and [11,
Figs. 3-4].
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Figure 2: Trie of subwords of 101110 (left); antichain trie corresponding to 101110
(center) and its corresponding antichains (right)

3 Antichain trie

We define an antichain analog of the [11] trie of subwords, call it the antichain trie, and
assign a distinct antichain to each of its nodes.

Definition 3.1 (Antichain trie). Given a binary word w of length d, construct the trie of sub-
words as above, but remove all edge labels (of 1s and 0s). We label each node v with a non-distinct
label L(v) as follows. First, we label the d + 1 nodes of the leftmost vertical linear tree Tw. Start-
ing from the top left node (ε) and moving down, label ε as 0, then its descendants as 1, 2, . . . , d.
When we attach copies of TM−1, . . . , T1, we keep these original node labels (so that two different
nodes may have the same label k). See Figure 2 (center).
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To each node v, we associate the path ε, v1, . . . , v` along the vertices from ε to v. Let p(v) be
the sequence of labels L(ε) = 0, L(v1), . . . , L(v`) of these vertices. Note that p(v) is a unique
ordered subsequence of (0, 1, . . . , d). Let A(ε) = ∅, and for the rest of the nodes v, let

A(v) =
{

j ∈ {1, 2, . . . , d} | j is the largest number in a block of consecutive integers in p(v)
}

.

Proposition 3.2. Let P be the poset corresponding to a binary word w. Then for each node v of
the antichain trie of w, the set A(v) is a distinct antichain of P.

Example 3.3. In Figure 2 (right), we have labeled every node v with A(v). For example, if v is the
node obtained by the path p(v) = (0, 1, 2, 3, 6) of Figure 2 (center), then A(v) = {3, 6}. For the
node v obtained by walking along p(v) = (0, 1, 3, 4, 6), we have the antichain A(v) = {1, 4, 6}.

Example 3.4. Let w = 10010111. Figure 3 shows the Hasse diagram of the 8-element poset P
corresponding to w. Figure 4 (left) depicts the trie of subwords for w. Write w = 11︸︷︷︸

u1

02︸︷︷︸
u2

11︸︷︷︸
u3

01︸︷︷︸
u4

13︸︷︷︸
u5

,

so M = 5. The root of T4 is u1u2u3u41 (the diamond node), the root of T3 is u1u2u30 (the square
node), and the root of T2 is u1u21 (the star node). Figure 4 (right) shows the antichain trie for w.
Lastly, Figure 5 shows the 32 antichains of P which we assign to the 32 nodes of the antichain
trie.
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Figure 3: The Hasse diagram of the poset corresponding to the word 10010111.

Remark 3.5. Given an antichain trie, let a vertical branch be a linear subtree with nodes
v1, . . . , vr+1 (r ≥ 1) so that v1 is either the root ε or is the right child of its parent (in particular,
it is not a left child), vi+1 is the left child of vi for i = 1, . . . , r, and vr+1 is not a parent.
For example, in Figure 2 (center), the original left-most vertical tree and the subtree labeled
{3, 4, 5, 6} are the only vertical branches while Figure 4 (right) has 7 vertical branches. Note
that, by construction of the antichain trie, a vertical move (downward) from a node v to its left
child v′ removes the label L(v) from A(v) and replaces it with the label L(v′) = L(v) + 1.

Similarly, let a horizontal branch be a linear subtree with nodes v1, . . . , vr+1 (r ≥ 1) so that
v1 is the left child of some node (in particular, v1 cannot be a right child), vi+1 is the right child of
vi for all i = 1, . . . , r, and vr+1 does not have a right child. For example, in Figure 2 (center), the
subtrees labeled {1, 3, 6}, {2, 6}, {3, 6}, and {4, 6} are the horizontal branches, with 2 different
horizontal branches both labeled by {4, 6}. The trie in Figure 4 (right) has exactly 4 horizontal
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Figure 4: The trie of subwords (left) and the antichain trie (right) of 10010111
∅
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Figure 5: Antichains corresponding to nodes of Figure 4 (right)

branches, labeled by {1, 4, 6}, {2, 4, 6}, {3, 5}, and {4, 6}. A horizontal move (to the right) from
a node v to its right child v′ adds to the antichain A(v) the (positive integer) label L(v′) of v′

which is greater than L(v) + 1.
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4 Bijection between antichains and subwords

Let w = w1 . . . wd be a binary word of length d. Let P = {P1 = 1, . . . , Pd = d} be
the corresponding piecewise-linear poset whose Hasse diagram H has edges labeled by
w2, . . . , wd. We now define a map f from the antichains in P to the subwords of w.

Definition 4.1. Let f (∅) be the empty subword. If A = {A1, A2 . . . , Ar} is a nonempty
antichain in P, let f (A) be the subword of w which is constructed as follows: The first letter
is 1. The next letters are the (possibly empty) sequence of edge labels of H between P1 and A1.
If A contains one element, we are done. If A contains more than one element, jump to the first
minimal or maximal element M1 appearing after A1. Record the labels of edges between M1 and
A2. Next, jump to the first minimal or maximal element M2 appearing after A2. Record the
labels of edges between M2 and A3. Continue as such until we finish recording the edge labels
between Mr−1 and Ar.

Example 4.2. In Figure 6, the antichains A={A1= 4 , A2= 10 } and A={A1= 1 , A2= 3 ,
A3= 7 , A4= 9 } are mapped to the subwords s=1 011 01100 and s=1 1 01 0 of w = 10010111.
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0
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9
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Figure 6: The antichains mapped to s=1 011 01100 (left) and s=1 1 01 0 (right) of
w = 10010111.

Theorem 4.3. The map f given in Definition 4.1 is a bijection from the antichains in P to the
subwords of w.

Proof. To show that f is surjective, let s be a subword of w = w1w2 . . . wd. If s is nonempty,
write s = wi1wi2 . . . wi` in such a way that each index ik is as small as possible (see Exam-
ple 4.4). Note that wi1 = w1 = 1 per our definition of subwords. Partition wi1 , wi2 , . . . , wi`
into a set Σ = Σs of (at least one) maximal blocks of subsequences of w such that each
subsequence is a consecutive subsequence.
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Let
A = AΣ = {j ∈ P|(wi, wi+1 . . . , wj) ∈ Σ}.

In other words, (w1) ∈ Σ if and only if 1 ∈ A; if 2 ≤ n ≤ d, then n ∈ A if and only if the
node n in the Hasse diagram H is immediately to the right of a block in Σ.

We claim that A is an antichain. If Σ only contains one block, then A consists of one
element, and hence A is an antichain in P. Otherwise, let (wi, . . . , wj), where 3 ≤ i ≤ d,
be a second block in Σ. If wi = 0, then wi−1 = 1 since the indices ik’s for the wik ’s were
chosen to be as small as possible. Likewise, if wi = 1, then wi−1 = 0. This means that
the node i− 1 (which is not in A) between wi−1 and wi is either a minimal or maximal
element of P. Hence no node to the left of i − 1 is related to the node j. Similarly, if
there is another block (wi′ , . . . , wj′) of Σ which appears after (wi, . . . , wj), the node j is
not related to the node j′. This shows that j is not related to any other element in A.

To show that the map is injective, assume f (A) = f (A′). Then f (A) = s = f (A′)
for some subword s = wi1 . . . wi` . Let Σs be the set of maximal blocks of wi1 , . . . , wi` as
defined on the first paragraph of this proof. But both A and A′ are defined by the same
set Σs of maximal blocks, so A = A′.

Example 4.4. Consider the word w = w1 . . . w10 = 1011101100. Identify w2, . . . , w10 with
the edges of the Hasse diagram H of P, see Figure 7. We write the subword s=11010 as s =
w1w3w6w7w9 so that the index of each letter wik is as small as possible. Breaking w1w3w6w7w9
into maximal blocks of consecutive subsequences of w gives four blocks (w1), (w3), (w6, w7), and
(w9). We build an antichain as follows. Since (w1) is a block, we take the left-most node of H,
node 1. We take the nodes of H to the right of the other three blocks, nodes 3, 7, and 9. Therefore,
the subword 11010 corresponds to the antichain { 1 , 3 , 7 , 9 }.

1
2
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6

7
8

9
10

1
0

1
1

1
0

1
1

0
0

Figure 7: Hasse diagram representing 1011101100; the antichain corresponding to the
subword 1 1 01 0 is {1, 3, 7, 9}.

5 Subwords to snake graph matchings

5.1 Background

We review the theory of snake graphs developed in [15, 12, 13, 3].
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Definition 5.1. A snake graph is a nonempty connected sequence of square tiles . To build a
snake graph G with d tiles, start with one tile, then glue a new tile to the north or the east of the
previous tile. We refer to the southwest-most tile of G as the first tile G1 and the northeast-most
tile as the last tile Gd. Figure 8 (left) illustrates a snake graph with 10 tiles.

Definition 5.2. A matching of a graph G is a subset of non-adjacent edges of G. A perfect
matching of G is a matching where every vertex of G is adjacent to exactly one edge of the
matching, see Figure 8. Define the minimal matching Pmin to be the unique perfect matching of
G which contains the first south edge and only boundary edges, see Figure 8 (center).

Figure 8: A snake graph (left); the minimal perfect matching (center); another perfect
matching of the snake graph (right)

A cluster algebra [6] is a commutative algebra with distinguished generators called
cluster variables which can be written as Laurent polynomials with positive coefficients.
In the case of a family of cluster algebras called cluster algebras from surfaces, given such
a Laurent polynomial xγ, it was shown in [12, Thm. 4.17] that xγ can be associated to a
certain snake graph Gγ and that xγ can be written as a sum over all perfect matchings
of Gγ. In particular, the terms of xγ are in bijection with the perfect matchings of Gγ.

The following allows us to associate a snake graph to a binary word.

Definition 5.3 ([3, Sec. 2.1]). A sign function on a snake graph G is a map from the set of
edges of G to {+,−} such that, for every tile of G, the north edge and the west edge have the
same sign, the south edge and the east edge have the same sign, and the sign on the north edge is
opposite to the sign on the south edge.

Note that there are exactly two sign functions on every snake graph. We consider
only the sign function where the south edge of the first tile has label −, see Figure 9
(left). Since we study binary expansions, we replace + with 1 and − and 0, see Figure 9
(center).

Given the sign function of a snake graph G whose west edge of the first tile has sign 1,
let the sign sequence of G be the sequence (1, w2, . . . , wd) where w2, . . . , wd are the signs
of the interior edges of the snake graph, see Figure 9 (right). As this sequence uniquely
determines a snake graph, we can associate to each binary word w = 1w2 . . . wd a snake
graph G(w).
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Figure 9: Corresponding sign function (left and center) and sign sequence (right) of
the snake graph for the binary expansion 1011101100.

5.2 Bijection from subwords to perfect matchings

An order filter is a subset F of P such that if t ∈ F and s ≥ t, then s ∈ F. The perfect
matchings of a snake graph G is known to form a lattice isomorphic to the lattice of
order filters of the piecewise-linear poset corresponding to G [14, Thm. 2], [13, Sec. 5].
It is also known that the map which sends an order filter to its set of minimal elements
is a bijection between the order filters and the antichains in a poset. Therefore, by
Theorem 4.3, there is a bijection from the subwords of w to the perfect matchings of
G(w).

Theorem 5.4. Given a binary subword w and its corresponding snake graph G = G(w), the
following map pm from the subwords of w to the perfect matchings of G is a bijection:

• Let s be a subword of w. If s is the empty word, let pm(s) be Pmin. Otherwise, write
s = wi1wi2 . . . wi` in such a way that each index ik is as small as possible (as we do in
Section 4) and circle the edges of G corresponding to the sign sequence for s.

• For each block L of consecutive circled edges, let �L be the tile which is immediately
north/east of the last edge in L.

• Let f il(�L) be the smallest connected sequence of tiles such that �L ∈ f il(�L) and the set
of edges bounding f il(�L) not in Pmin forms a perfect matching of f il(�L).

• Let f il(s) =
⋃

L f il(�L), and define pm(s) to be the symmetric difference {edges bounding
f il(s)} 	 Pmin.

Example 5.5. Consider the word w = 1011101100. In Figure 10, we circle the edges of G
corresponding to s = 101101100. The corresponding 2 blocks of shaded tiles are

{
d , e

}
and{

h , i , j
}

, and pm(s) is the set of thick edges. In Figure 11, we circle the edges of G corre-
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sponding to s = 11010. Note that f il
(

g
)
=
{

g , h , i
}
= f il

(
i
)

. The 3 blocks of shaded

tiles are { a },
{

c , d , e
}

, and
{

g , h , i
}

so that f il(11010) =
{

a , c , d , e , g , h , i
}

.

01 10
1

1

d 01 10
1

1
1

00
00 j

�1011= d and �01100= j

d e

h

i j

Figure 10: Tiles �L associated to blocks L of circled edges (left); the set f il(s) of shaded
tiles and the set pm(s) of thick solid edges (right) for the subword s= 1011 01100 .

01 a 10 c

1 1 01 10 g
1

00
i 0

�1= a , �1= c , �01= g , �0= i
a c

d e g
h

i

Figure 11: Tiles �L associated to blocks L of circled edges (left); the set f il(s) of shaded
tiles and the set pm(s) of thick solid edges (right) for the subword s= 1 1 01 0 .
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