
Séminaire Lotharingien de Combinatoire 82B (2019) Proceedings of the 31st Conference on Formal Power
Article #74, 12 pp. Series and Algebraic Combinatorics (Ljubljana)

Unitary friezes and frieze vectors
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Abstract. We study friezes of type Q as homomorphisms from the cluster algebra to an
arbitrary integral domain. In particular, we show that every positive integral frieze of
affine Dynkin type A is unitary, which means it is obtained by specializing each cluster
variable in one cluster to the constant 1. This completes the answer to the question of
unitarity for all positive integral friezes of Dynkin and affine Dynkin types.

For an arbitrary quiver Q, we introduce a new class of integer vectors which we call
frieze vectors. These frieze vectors are defined as solutions of certain Diophantine
equations given by the cluster variables in the cluster algebra. We establish a bijection
between the positive unitary frieze vectors and the clusters in the cluster algebra.

Résumé. Nous étudions les frieses de type Q comme étant des homomorphismes de
l’algèbre amassée vers un anneau intègre. Nous montrons en particulier, que chaque
friese entière positive de type A-affine est unitaire, ce qui signifie que l’on peut la
construire en spécialisant chaqu’une des variables d’un amas en la constante 1. Ainsi
nous complétons la réponse à la question d’unitarité pour les frieses entières positives
de type Dynkin ou affine.

Pour un carquois arbitraire Q, nous introduisons une nouvelle classe de vecteurs en-
tiers que l’on appelle des vecteurs de friese. Ces vecteurs de friese sont définis comme
des solutions de certaines équations diophantines données par les variables amassées
de l’algèbre amassée. Nous montrons que les vecteurs de friese sont en bijection avec
les amas de l’alg‘ebre amassées.
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1 Introduction

Friezes of type An were classified by Conway and Coxeter in 1973 [5]. More than 30
years later, Caldero and Chapoton discovered a connection between friezes and cluster
algebras [3]. Since then friezes were studied by many authors; see [13] for an overview.

Classical friezes are defined as certain planar arrays of positive integers that satisfy a
diamond relation. In this paper however, we take a different point of view and define a
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frieze to be a homomorphism from an arbitrary cluster algebra to an arbitrary integral
domain. The usual planar array is obtained from the Auslander–Reiten quiver of the cor-
responding cluster category by replacing the indecomposable objects (i.e. the vertices of
the Auslander–Reiten quiver) by the values of the homomorphism on the corresponding
cluster algebra elements. Friezes as homomorphisms were also considered in [8, 9].

Let Q be a quiver without loops and 2-cycles and let A(Q) be the corresponding
cluster algebra with trivial coefficients [7]. We define a frieze of type Q to be a ring
homomorphism F : A(Q) → R from the cluster algebra to an integral domain R. The
frieze F is called non-zero if every cluster variable is mapped to a non-zero element of R
and F is said to be unitary if there exists a cluster x such that F (x) is a unit in R, for all
x ∈ x. Moreover F is called integral if R = Z, and positive if R = Z and every cluster
variable is mapped to a positive integer. Our definition of unitary friezes agrees with
that of [12, 9] for positive integral friezes. Note however that if the integral frieze is not
positive, we also allow specialization at -1.

Positive integral friezes of Dynkin type An are precisely the classical Conway–Coxeter
friezes. The classical frieze is given by displaying the values of F on the cluster variables
in the shape of the Auslander–Reiten quiver of the cluster category, see Section 2.1.

Every non-zero frieze is determined by its values F (x) = (a1, . . . , an) on an arbitrary
cluster x = (x1, . . . , xn) in A(Q). It is therefore natural to ask which values (a1, . . . , an)
produce positive unitary integral friezes. We call such a vector (a1, . . . , an) a unitary frieze
vector relative to the cluster x. Our first main result is the following.

Theorem 1. Let Q be a quiver without loops and 2-cycles and let x = (x1, . . . , xn) be an
arbitrary cluster of A(Q). Then there is a bijection

φ : {unordered clusters in A(Q)} −→ {positive unitary frieze vectors relative to x}
x′ = {x′1, . . . , x′n} 7−→ φ(x′) = (a1, . . . , an).

Thus every cluster x′ defines a unique unitary frieze vector. One can thus think of
the frieze vectors as another parametrization of the clusters in the cluster algebra. The
frieze vectors are different from other known vectors appearing in cluster algebra theory
like denominator vectors, c-vectors or g-vectors.

Our second main result is about the unitarity of positive integral friezes. Since Con-
way and Coxeter’s work in 1973, it is known that every positive integral frieze of Dynkin
type A is unitary. For Dynkin types D and E there exist non-unitary positive integral
friezes, see [9]. We extend these results to the affine Dynkin types as follows.

Theorem 2. Let Q be a quiver of type Ãp,q and let F : A(Q)→ Z be a positive integral frieze.
Then F is unitary.

Our proof is constructive. We give an algorithm that starts from an arbitrary positive
integral frieze F and produces the unique cluster x such that F (x) = (1, . . . , 1). In the
other affine types D̃ and Ẽ, there are non-unitary positive integral friezes.
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It is natural to ask if friezes of types A and Ã remain unitary if one replaces the ring
of integers by other integral domains. However, already over the Gaussian integers we
give an example of a non-unitary frieze of Dynkin type A2. The classification of friezes
over the Gaussian integers or other integral domains besides Z is open even in type A.
For type A1 there are 12 non-zero friezes over the Gaussian integers, see [8].

This is an extended abstract of [10], and is organized as follows. In Section 2, we give
several examples of friezes of type A3 over different rings and show how the friezes
are a generalization of Conway–Coxeter friezes. Section 3 is devoted to the definition of
frieze vectors and the proof of Theorem 1, and Theorem 2 is proved in Section 4.

2 Examples of friezes

2.1 The identity homomorphism

For example, let Q be the type A3 quiver 1 → 2 ← 3. We can visualize a frieze in the
Auslander–Reiten quiver of the cluster category CQ (see [4, 2]) as follows. First let us
write down the Auslander–Reiten quiver.

3
2 [1]

$$

3
2

$$
1

$$

1
2 [1]

2 [1]
$$
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2

$$

::

1 3
2

$$
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::

3
2 [1]

Here we use a standard notation for the representations of the quiver Q, see for exam-
ple [14], and [1] denotes the shift. Vertices with the same label are identified, so the
quiver lies on a Moebius strip. The Auslander–Reiten translation τ is the horizontal
translation to the left. For example τ 3 = 1

2 . The Auslander–Reiten triangles are given
by the meshes in the Auslander–Reiten quiver, for example

→ 1
2 [1]→ 2 → 1

2 → and → 2 → 1
2 ⊕ 3

2 → 1 3
2 →

are Auslander–Reiten triangles.
The identity homomorphism A(Q)→ A(Q) is an example of a frieze of type A3:
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Note that the Auslander–Reiten triangles give the usual diamond rules, for example

x1
x1x3 + 1 + x2

x1x2
=

x1x3 + 1
x2

+ 1 and
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x1x3 + 1
x2

x2
2 + 2x2 + 1 + x1x3

x1x2x3
=

x1x3 + 1 + x2

x1x2

x1x3 + 1 + x2

x2x3
+ 1.

2.2 Specializations

We compute several specializations of the example above.
(i) Specializing x1 = x2 = x3 = 1, we obtain the unitary positive integral frieze

1
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$$

1
1
$$

::
2
$$

::
5
$$

::
1
$$

::

1
::

3
::

2
::

1

Here the previous examples of the diamond rules become simply

1 · 3 = 2 + 1 and 2 · 5 = 3 · 3 + 1.

This is an example of a classical Conway–Coxeter frieze; let us point out that one can
extend this frieze pattern by a row of 1’s above and below the current pattern, which is
how the Conway–Coxeter friezes are usually represented.

(ii) Specializing x1 = x2 = 1 and x3 = −1, we obtain the following unitary integral
frieze which is non-positive, not even non-zero.

−1
��
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��
2
��

1

1
��

??

0
��

??

−3
��

??

1
��

??

1

??

1
??

−2

??

−1

Here our example diamond relations become 1 · 1 = 0 + 1 and 0 · (−3) = (−1) · 1 + 1.
(iii) Specializing x1 = 1, x2 = i, and x3 = i, we obtain the following unitary non-zero

frieze in the Gaussian integers Z[i].

i
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Our example diamond relations become 1 · (2− i) = (1− i) + 1 and (1− i) · (−3i) =
(−1− 2i) · (2− i) + 1.

(iv) Specializing x1 = 1, x2 = 1+
√
−3

2 , x3 = 1, we obtain the following unitary non-

zero frieze in the quadratic integer ring Z[
√
−3]. The units in this ring are ±1, ±1±

√
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In this case, the examples of the diamond relations become 1 · (2−
√
−3) = 1−

√
−3

and (1−
√
−3)(7−

√
−3

2 ) = (2−
√
−3)2 + 1.

3 Frieze vectors

In this section, we introduce a class of positive integer vectors and show that they are in
bijection with the clusters of the cluster algebra.

3.1 Definition

We start with a general result on non-zero friezes.

Proposition 3.1. Every non-zero frieze F : A(Q) → R is completely determined by its values
on an arbitrary cluster in A(Q).

Proof. Let x = (x1, · · · , xn) be a cluster in A(Q) and let u be an arbitrary cluster variable
in A(Q) that does not lie in x. By the Laurent phenomenon [7], we can write u as a
Laurent polynomial in x1, . . . , xn, thus

u =
f (x1, . . . , xn)

xd1
1 · · · x

dn
n

with f ∈ Z[x1, . . . , xn], di ≥ 0.

Thus

F (u) = f (F (x1), . . . ,F (xn))

F (x1)d1 · · · F (xn)dn

in the field of fractions of R. Note that this expression is well-defined since the frieze is
non-zero. Therefore F (u) is determined by the values F (xi). Since the cluster algebra is
generated by its cluster variables, this completes the proof.

Proposition 3.1 implies that given an arbitrary cluster x = (x1, . . . , xn) we can obtain
every non-zero frieze by specializing the cluster variables xi of the cluster to certain ring
elements F (xi) = ai ∈ R. It is important to note that by far not every choice of elements
ai ∈ R will produce a frieze with values in R, because in general the values will be in the
field of fractions of R. This leads us to the following definition.

Definition 3.2. Let x = (x1, . . . , xn) be a cluster of A(Q).
(1) A vector (a1, . . . , an) ∈ Rn is called a frieze vector relative to x if the frieze F defined

by F (xi) = ai has values in R. If the frieze F is unitary we say that the frieze vector
(a1, . . . , an) is unitary.

(2) A vector (a1, . . . , an) ∈ Zn
>0 is called a positive frieze vector relative to x if the frieze

F defined by F (xi) = ai is positive integral.
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Proposition 3.3. (1) Let (a1, . . . , an) ∈ Rn such that every ai is a unit in R. Then (a1, . . . , an)
is a (unitary) frieze vector relative to every cluster x = (x1, . . . , xn) in A(Q).

(2) The vector (1, . . . , 1) ∈ Zn
>0 is a positive (unitary) frieze vector relative to every cluster

x = (x1, . . . , xn) in A(Q).

Proof. (1) By the Laurent phenomenon, every cluster variable is a Laurent polynomial in
x. Since each xi is specialized to a unit in R, the denominator of this Laurent polynomial
also specializes to a unit in R. Therefore the image of every cluster variable lies in R,
and hence F (A(Q)) ⊂ R.

(2) The frieze is integral by part (1) and positivity follows from the positivity theorem
for cluster variables [11].

3.2 Acyclic type

In the case where the quiver Q is mutation equivalent to an acyclic quiver, we have the
following characterization of frieze vectors.

Proposition 3.4. Let (x = (x1, . . . , xn), Q) be an acyclic seed. Then (a1, . . . , an) ∈ Rn is a
frieze vector relative to x if and only if ai is a divisor of ∏

i→j
aj +∏

i←j
aj in R, for all i = 1, . . . , n.

Proof. Let x′i denote the cluster variable obtained from (x, Q) by mutating in direction i.
Then

x′i =
∏i→j xj + ∏i←j xj

xi
.

By [1, Cor. 1.21], the cluster algebra is generated by the 2n variables x1, . . . , xn, x′1, . . . , x′n.
Let F be the homomorphism defined by F (xi) = ai. Then

F (A(Q)) ⊂ R⇔ F (x′i) ∈ R for each i ⇔ ai divides ∏
i→j

aj + ∏
i←j

aj in R for all i.

3.3 Main result on frieze vectors

In this subsection we state and prove our first main result.

Proposition 3.5 ([10, Prop. 2.5]). Let F : A(Q) → Z be a positive unitary integral frieze and
let x be a cluster such that F (x) = (1, . . . , 1). Then for all cluster variables u /∈ x we have
F (u) > 1. In particular x is the unique cluster such that F (x) = (1, . . . , 1).

Theorem 3.6. Let Q be a quiver without loops and 2-cycles and let x = (x1, . . . , xn) be an
arbitrary cluster of A(Q). Then there is a bijection

φ : {unordered clusters in A(Q)} −→ {positive unitary frieze vectors relative to x}
x′ = {x′1, . . . , x′n} 7−→ φ(x′) = (a1, . . . , an).
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Remark 3.7. (1) The theorem implies that every cluster x′ defines a unique positive
unitary frieze vector in Zn

>0.
(2) We stress that, while the order of the cluster variables x′1, . . . , x′n is irrelevant, the

order of the entries of the frieze vector φ(x′) = (a1, . . . , an) is important. In other words,
if σ is a permutation then φ(σx′) = φ(x′), but σφ(x′) 6= φ(x′) in general.

Proof. Each cluster variable x1, . . . , xn in the fixed cluster x can be expressed as a Laurent
polynomial in the cluster x′, say xi = Li(x′1, . . . , x′n). We define the map φ by φ(x′) =
(a1, . . . , an), with ai = Li(1, . . . , 1). In other words, φ(x′) is equal to the vector F (x) =
(a1, . . . , an), where F is the frieze defined by specializing the cluster variables in x′ to
1. By Proposition 3.3, the frieze F is unitary, integral and positive. Thus (a1, . . . , an) is
a positive unitary frieze vector relative to x. Furthermore, since every variable in x′ is
specialized to 1, we clearly have φ(σx′) = φ(x′), for every permutation σ. Thus the map
φ is well-defined.

To show that φ is surjective, let (a1, . . . , an) ∈ Zn
>0 be any positive unitary frieze

vector relative to x. By definition, the corresponding frieze defined by F (xi) = ai is
positive and unitary, so there exists a cluster x′ = (x′1, . . . , x′n) such that F (x′i) = 1, for
i = 1, . . . , n. By construction of φ, we have φ(x′) = (a1, . . . , an), so φ is surjective.

To show injectivity, let x′, x′′ be clusters in A(Q) with φ(x′) = φ(x′′). Let F ′ and F ′′
be the unitary friezes defined by F ′(x′i) = 1 and F ′′(x′′i ) = 1, respectively. Since φ(x′) =
φ(x′′), both friezes have the same values on x, thus F ′(x) = F ′′(x) = (a1, . . . , an). Now
Proposition 3.1 implies that F ′ = F ′′, and Proposition 3.5 yields x′ = x′′.

Remark 3.8. The inverse of the bijection φ is given as follows. Given a positive unitary
frieze vector (a1, . . . , an), we compute the corresponding unitary frieze F by specializing
(x1, . . . , xn) = (a1, . . . , an). By Proposition 3.5, this frieze has a unique cluster x′ such
that F (x′) = (1, . . . , 1). Then φ−1(a1, . . . , an) = x′.

3.4 Example

Thanks to Proposition 3.4, the positive integral frieze vectors (a1, a2, a3) relative to the
seed (x1, x2, x3), 1→ 2← 3 are characterized by the condition that the three expressions
a2 + 1

a1
,

a1a3 + 1
a2

,
a2 + 1

a3
are integers. The 14 frieze vectors (a1, a2, a3) are the following.

(1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 2, 3) (1, 3, 2) (2, 1, 1) (2, 1, 2) (2, 3, 1) (2, 3, 4)
(2, 5, 2) (3, 2, 1) (3, 2, 3) (3, 5, 3) (4, 3, 2)

Equivalently, we can think of the conditions as Diophantine equations in two sets of
integers as follows.

a1b1 = a2 + 1, a2b2 = a1a3 + 1, a3b3 = a2 + 1.
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τb

τd

τa τcτi

Figure 1: Quadrilateral in the triangulation T.

The vectors (b1, b2, b3), in the same order as the frieze vectors above, are the following.

(2, 2, 2) (2, 3, 1) (3, 1, 3) (3, 2, 1) (4, 1, 2) (1, 3, 2) (1, 5, 1) (2, 1, 4) (2, 3, 1)
(3, 1, 3) (1, 2, 3) (1, 5, 1) (2, 2, 2) (1, 3, 2)

4 Friezes of type Ã

In this section, we study the special case of integral friezes of affine Dynkin type A. We
show that every positive integral frieze of this type is unitary.

Let Q be a quiver that is mutation equivalent to a quiver Q′ of type Ãp,q. The cluster
algebra A(Q) is of surface type and the corresponding surface is an annulus with p
marked points on one boundary component and q marked points on the other boundary
component, see [6]. The cluster variables xγ in A(Q) are in bijection with the arcs γ in
the annulus. We call a cluster variable xγ transjective if its arc γ has its two endpoints
on two different boundary components (bridging arc) and we call the cluster variable
xγ regular if the arc γ has both endpoints on the same boundary component (peripheral
arc). The terminology transjective versus regular comes from the cluster category CQ.

Lemma 4.1. LetF : A(Q)→ Z be a positive integral frieze of type Ãp,q and let x = (x1, . . . , xn)
be a cluster such that F (x) = 1 for each regular cluster variable x ∈ x if any. Let i be such that
F (xi) ≥ F (xj) for all j, and suppose that F (xi) > 1. Let x′i be the cluster variable obtained from
x by mutation at i. Then F (x′i) < F (xi) and if x′i is a regular cluster variable then F (x′i) = 1.

Proof. Let τj be the arc corresponding to the cluster variable xj, so that T = (τ1, . . . , τn) is
the triangulation corresponding to the cluster x. The mutation in direction i is given by
flipping the arc τi in T, and the exchange relation in the cluster algebra is of the form

xix′i = xaxc + xbxd (4.1)

where τi is the diagonal in the quadrilateral in T with sides τa, τb, τc, τd as in Figure 1
some of which may be boundary edges.

Since F (xi) > 1 but F (x) = 1 for every regular cluster variable x ∈ x, we have that
xi is transjective. Hence τi is a bridging arc, so its endpoints lie on different boundary
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τi

τd

τa τb

τcτf

τe

τi

τd

τa τb

τc

τf

τe

Figure 2: Two possible configurations in T if τc is a peripheral arc or a boundary edge.

components. Therefore one of the arcs τa, τb is bridging and the other is peripheral (or a
boundary edge), and one of τc, τd is bridging and the other is peripheral (or a boundary
edge). Assume without loss of generality that τa is bridging and consider two cases.

Suppose first that τc is a bridging arc. Then the relation (4.1) implies

F (x′i) = (F (xa)F (xc) + 1)/F (xi) (4.2)

because the frieze has value 1 on the two regular variables (or boundary edge weights)
xb and xd. Note that in this case the flipped arc τ′i is bridging. Recall that F (xa) ≤ F (xi)
and F (xc) ≤ F (xi). If F (xa) = F (xi) then the right hand side of (4.2) would be equal
to F (xc) + 1/F (xi) which is not an integer. Thus F (xa) < F (xi) and similarly F (xc) <
F (xi). Therefore the right hand side of (4.2) is at most ((F (xi) − 1)2 + 1)/F (xi) =
F (xi)− 2 + (2/F (xi)) which is strictly smaller than F (xi), and we are done.

Suppose now that τc is peripheral. Then τd is bridging and the relation (4.1) implies

F (x′i) = (F (xa) +F (xd))/F (xi) (4.3)

Note that in this case the arc τ′i is peripheral and forms a triangle with the two peripheral
arcs τb and τc. We will show that F (x′i) = 1. Since F (xi) is the maximal frieze value in
x, equation (4.3) yields F (x′i) ≤ 2F (xi)/F (xi) = 2. If F (x′i) = 1 we are done. Assume
therefore that F (x′i) = 2. Then equation (4.3) implies

F (xa) = F (xd) = F (xi) ≥ 2. (4.4)

Consider the quadrilateral in T in which τd is the diagonal and denote its sides τi, τc, τe, τf
where τi, τe are bridging arcs and τc, τf are peripheral, see Figure 2.

Let x′d be the cluster variable obtained by mutating x in direction d. Then in the
situation of the left picture in Figure 2 we have

F (x′d) = (F (xi)F (xe) + 1)/F (xd) = F (xe) + 1/F (xi),
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where the last equality holds by (4.4). But since F (xi) ≥ 2, this expression is not an
integer, so we have a contradiction.

Therefore we must be in the situation of the right picture in Figure 2, and we have

F (x′d) = (F (xi) +F (xe))/F (xd) = 1 +F (xe)/F (xi),

where the last identity holds by (4.4). Since F (xi) ≥ F (xe) and F is a positive integral
frieze, we must have F (xi) = F (xe) and F (x′d) = 2.

We have thus shown that if F (x′i) = 2 then the triangulation T contains a fan of
bridging arcs τi, τd, τe and F (x′d) = 2,F (xe) = F (xi). We can now repeat this argument
by considering the cluster variable x′e obtained by mutating x in direction e, and recur-
sively with every new bridging arc in the fan and we obtain a fan of bridging arcs in T
and each arc in this fan has the same frieze value F (xi) ≥ 2. Since T is a triangulation
of the annulus, this fan is finite, and the two arcs bounding it correspond to a sink and a
source in the quiver QT. Mutating at one of those arcs again gives a contradiction as in
Figure 2 (left). We have shown that F (x′i) cannot be equal to 2, and thus F (x′i) = 1.

We are now ready for the main theorem of this section.

Theorem 4.2. Let Q be a quiver of type Ãp,q and let F : A(Q) → Z be a positive integral
frieze. Then F is unitary.

Proof. We need to show that there exists a cluster x′ such that F (x′) = (1, . . . , 1). Let
x0 be a cluster consisting entirely of transjective cluster variables. Its triangulation T0
consists entirely of bridging arcs. Then x0 = (x1, . . . , xn) is a cluster that satisfies the
condition of Lemma 4.1. If F (x0) = (1, . . . , 1) we are done. Otherwise Lemma 4.1
implies that mutating at a cluster variable xi with maximal frieze value will produce
a cluster x1 = (x0 \ {xi}) ∪ {x′i} such that F (x′i) < F (xi) and if x′i is regular then
F (x′i) = 1. Therefore, if F (x1) 6= (1, . . . , 1) then the cluster x1 also satisfies the hy-
pothesis of Lemma 4.1, and we can repeat this procedure to produce a sequence of
clusters x0, x1, . . . , xs, . . . such that xs = (xs−1 \ {x}) ∪ {x′} with F (xs) 6= (1, . . . , 1) and
F (x′) < F (x). Since the frieze is positive integral this process must stop. Thus there is
a cluster xt such that F (xt) = (1, . . . , 1).

4.1 Friezes of type Ã2,1

There are precisely two positive integral friezes of type Ã2,1 up to symmetry, and by
Theorem 4.2 both are unitary. In Figure 3, the cluster x with F (x) = (1, 1, 1) is transjec-
tive and in Figure 4 one of the cluster variables in x is regular. In the figures, we show
the values of the friezes on the transjective component of the Auslander–Reiten quiver.
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26

41

2

3

7

1

1

1

7

3

2

41

26

11

362

153

97

2131

1351

571

18817

7953

5042

Figure 3: An Ã1,2 frieze obtained by specializing the cluster variables of an acyclic
seed to 1. The two peripheral arcs have frieze values 2 and 3.
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5

18

13

3

2

7

1

2

1

7

2

3

13

18

5

123

34

47

233

322

89

2207

610

843

Figure 4: An Ã1,2 frieze obtained by specializing the cluster variables of a non-acyclic
seed to 1. The two peripheral arcs have frieze values 1 and 5.

4.2 Further unitarity questions

It was shown in [5] that every positive integral frieze of Dynkin type An is unitary,
and by Theorem 4.2, the same is true for affine type Ãp,q. It is natural to ask if these
results can be extended to friezes with values in other integral domains, for example in
quadratic integer rings. However the following example shows that the result already
fails over the Gaussian integers.

Example 4.3. Let Q be the quiver 1→ 2 with the Auslander–Reiten quiver of CQ:

1
2 [1]

""

1
2

""

2 [1]
""

2 [1]

<<

2

<<

1

<<

1
2 [1]

Define a non-unitary frieze F : A(Q)→ Z[i] by F (x1) = 1, F (x2) = 1 + i. We can
visualize F in the Auslander–Reiten quiver as we do in Section 2:

1 + i

""

2− i

""

1

""
1

<<

2 + i

<<

1− i

<<

1 + i

4.2.1 Other Dynkin or affine types

For Dynkin types D and E there are non-unitary positive integral friezes [9], and these
examples give rise to non-unitary positive integral friezes in the affine types D̃ and Ẽ.
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