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Counting partitions inside a rectangle
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Abstract. We consider the number of partitions of n whose Young diagrams fit inside
an m× ` rectangle; equivalently, we study the coefficients of the q-binomial coefficient
(m+`

m )q. We obtain sharp asymptotics throughout the regime ` = Θ(m) and n = Θ(m2)

where a limit shape exists. Previously, sharp asymptotics were derived by Takács only
in the regime where |n− `m/2| = O(

√
`m(`+ m)) using a local central limit theorem.

Our approach is to solve a related large deviation problem: we describe the tilted
measure that produces configurations whose bounding rectangle has the given aspect
ratio and is filled to the given proportion. Our results are sufficiently sharp to yield
the first asymptotic estimates on the consecutive differences of these numbers when
n is increased by one and m, ` remain the same, hence quantifying and significantly
refining Sylvester’s unimodality theorem.

Résumé. Nous trouvons asymptotique pour le nombre de partitions de n dont les
tableaux de Young s’inscrivent dans un rectangle m× `; également compté par le co-
efficient q-binomial (m+`

m )q. Notre technique consiste á utiliser un théoréme central
limite local, et nous affinions le théoréme de l’unimodalité de Sylvester en donnant
des estimations asymptotiques à des différences consécutives.
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1 Introduction

A partition λ of n is a sequence of weakly decreasing nonnegative integers λ = (λ1 ≥
λ2 ≥ . . .) whose sum |λ| = λ1 + λ2 + · · · is equal to n. They are at the heart of much
of Enumerative and Algebraic Combinatorics, and connect with Representation Theory
(specifically Sn and GLn) and the theory of special functions. Their study bloomed with
the remarkable discoveries of Ramanujan and started the field of partition theory [1].
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The number of partitions of n, typically denoted by p(n) but here unconventionally
by Nn to avoid confusion with probabilities, was implicitly determined by Euler via the
generating function

∞

∑
n=0

Nnqn =
∞

∏
i=1

1
1− qi .

There is no exact explicit formula for the numbers Nn. The asymptotic formula

Nn := #{λ ` n} ∼ 1
4n
√

3
exp

(
π

√
2n
3

)
, (1.1)

of Hardy and Ramanujan [3], is considered to be the beginning of the use of complex
variable methods for asymptotic enumeration of partitions (the so-called circle method).

Here we obtain asymptotic formulas similar to (1.1) for the number of partitions λ of
n whose Young diagram fits inside an m× ` rectangle, denoted

Nn(`, m) := #{λ ` n : λ1 ≤ `, length(λ) ≤ m} .

The generating function of Nn(`, m) is the, also ubiquitous, q-binomial coefficient(
`+ m

m

)
q
=

∏`+m
i=1 (1− qi)

∏`
i=1(1− qi)∏m

i=1(1− qi)
=

`m

∑
n=0

Nn(`, m)qn .

Notably, the numbers Nn(`, m) form a symmetric unimodal sequence

1 = N0(`, m) ≤ N1(`, m) ≤ · · · ≤ Nbm`/2c(`, m) ≥ · · · ≥ Nm`(`, m) = 1,

a fact conjectured by Cayley in 1856 and proven by Sylvester in 1878 via the representa-
tion theory of sl2 [7] and followed by other algebraic and combinatorial proofs (see the
next section and the journal version [5] for full bibliography and history of the problem).
Over the last one hundred forty years, no previous asymptotic methods have been able to
prove this unimodality. As a consequence of our refined asymptotics of Nn(`, m) we de-
rive not just the unimodality, but the asymptotics of the difference Nn(`, m)−Nn−1(`, m).

2 The asymptotics: main results

Our main result is an asymptotic formula for Nn(`, m) in the regime `/m → A and
n/m2 → B for any fixed A > B > 0, i.e., when the portion of the m× ` rectangle that is
filled approaches a value that is neither zero nor 1. Then there is a limit shape, whose
existence also follows from our methods (see Section 4). By “asymptotic formula” we
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mean a formula giving Nn(`, m) up to a factor of 1 + o(1); such asymptotic equivalence
is denoted with the symbol ∼. By the symmetry Nn(`, m) = Nm`−n(`, m) it suffices to
consider only the case A ≥ 2B > 0.

Given A ≥ 2B > 0 we define three quantities c, d and ∆. Consider the equations

A =
∫ 1

0

1
1− e−c−td dt− 1 =

1
d

log

(
ec+d − 1

ec − 1

)
− 1 , (2.1)

B =
∫ 1

0

t
1− e−c−td dt− 1

2
=

d log(1−e−c−d) + dilog (1−e−c)− dilog (1−e−c−d)

d2 , (2.2)

using the dilogarithm function dilog (x) =
∫ x

1

log t
1− t

dt =
∞

∑
k=1

(1− x)k

k2 for |x − 1| < 1.

The quantities c, d are the unique solution to the system of Equations (2.1), (2.2):

Lemma 1. For any A > 0 and B ∈ (0, A/2) there exist unique c, d > 0 satisfying Equa-
tions (2.1) and (2.2). Moreover, for a fixed A, when B decreases from A/2 to 0 then d increases
strictly from 0 to ∞ and c decreases strictly from log

(
A+1

A

)
to 1. When B > 0 is fixed and A

goes to ∞ then c goes to 0 and d goes to the root of d2 = B
(

d log(1− e−d)− dilog (1− e−d)
)

.

The quantity ∆, which is seen to be strictly positive, is defined by

∆ =
2Bec(ed − 1) + 2A(ec − 1)− 1

d2(ed+c − 1)(ec − 1)
− A2

d2 . (2.3)

Theorem 2. Given m, ` and n, let A := `/m and B := n/m2 and define c, d and ∆ as above.
Let K be any compact subset of {(x, y) : x ≥ 2y > 0}. As m→ ∞ with ` and n varying so that
(A, B) remains in K,

Nn(`, m) ∼ em[cA+2dB−log(1−e−c−d)]

2πm2
√

∆ (1− e−c) (1− e−c−d)
, (2.4)

where c and d vary in a Lipschitz manner with (A, B) ∈ K.

Remark. In the special case B = A/2, the parameters take on the elementary values

d = 0 , c = log
(

A + 1
A

)
, and ∆ =

A2(A + 1)2

12
.

In this case the exponent and leading constant are the limits as d→ 0, giving

NAm2/2(Am, m) ∼
√

3
Aπm2

[
(A + 1)A+1

AA

]m

.

In the special case when A → ∞, so that the restriction on the size of the parts is
removed, one has c = 0 and d is a solution to an explicit equation given in Lemma 1. In
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Figure 1: Exponential growth of NBm2(m, m) predicted by Takács’ formula (blue, above)
compared to the actual exponential growth given by Theorem 2 (red, below).

this case the result matches the one obtained first by Szekeres using complex analysis,
then by Canfield using a recursion, and most recently by Romik using probabilistic
methods based on Fristedt’s ensemble. These works and others are explained in [5].

Takács [8] observed that for typical partitions of size m`/2, the gaps between part
sizes behave like independent geometric random variables with mean A. Counting the
partitions is therefore equivalent to computing the probability that these m + 1 geomet-
ric random variables will sum precisely to ` and that the area of the ensuing Young
diagram will be precisely n. A local central limit theorem (LCLT) immediately yields a
sharp asymptotic estimate. However, when |B− A/2| � m−1/2 log m the error in this
asymptotic is much bigger than the main term of the Gaussian estimate provided by
the LCLT. We refer the reader to the full version [5] for the history of this problem (from
Erdös and Lehner, through Szekeres, Mann and Whitney, Takács, Romik, and Richmond)
and the limitations of previous methods (most notably the circle method and CLT).

We circumvent this limitation on the use of the LCLT using a technique from the
theory of large deviations. Specifically, we employ a so-called tilted measure for which
maximum likelihood occurs at any desired pair (A, B). The tilted measure replaces the
IID geometric random variables giving us the part sizes of λ by still independent but no
longer identically distributed geometric random variables, where the parameter 1− pi
for the ith variable varies in a log-linear manner. The restrictions given by A and B
are linear conditions on the part sizes, and the choice of parameters pi ensures that the
maximum likely outcome occurs at the given restrictions. The refined LCLT then gives
precise asymptotics.

Remark. In [4], the authors, independently and concurrently with our paper, used the
generating function for q-binomial coefficients and a saddle point analysis to derive
the asymptotics for Nn(m, `) in the cases when m, ` ≥ 4

√
n, corresponding to B ≤

min{1, A2}/16 in our notation. Those authors express their result using the root of
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a hypergeometric identity similar to (2.2), however their methods give weaker error
bounds and consequently cannot answer questions of unimodality.

Unimodality

Sylvester’s proof [7] of unimodality of Nn(`, m) in n, and most subsequent proofs (no-
tably of Stanley via the hard Lefshetz theorem and later the linear algebra paradigm, re-
fined by Proctor) are algebraic, viewing Nn(`, m) as dimensions of certain vector spaces,
or their differences as multiplicities of representations. While there are also purely com-
binatorial proofs of unimodality, notably O’Hara’s and the more abstract one of Pouzet
and Rosenberg, they do not give the desired symmetric chain decomposition of the
subposet of the partition lattice. These methods do not give ways of estimating the
asymptotic size of the coefficients or their difference. It is now known that Nn(`, m) is
strictly unimodal (first shown by Pak and Panova, later also by Zanello and others), and
the following lower bound on the consecutive difference was obtained in [6, Theorem
1.2] using a connection between integer partitions and Kronecker coefficients g of the
symmetric group Sm`:

g((m`− n, n), (m`), (m`)) = Nn(`, m)− Nn−1(`, m) ≥ 0.004
2
√

s

s9/4 , (2.5)

where n ≤ `m/2 and s = min{2n, `2, m2}. In particular, when ` = m we have s = 2n.

Any sharp asymptotics of the difference appears to be out of reach of these algebraic
methods, however as a consequence of Theorem 2 we obtain the following estimate.

Theorem 3. Given m, ` and n, let A := `/m and B := n/m2 and define d as above. Suppose
m, ` and n go to infinity so that (A, B) remains in a compact subset of {(x, y) : x ≥ 2y > 0}
and

m−1 |n− lm/2| → ∞.

Then for the consecutive difference of Nn and via (2.5) for the Kronecker coefficient of a two-row
partition and two rectangles we have

g((m`− n− 1, n + 1), m`, m`) = Nn+1(`, m)− Nn(`, m) ∼ d
m

Nn(`, m).

Remark. The condition m−1 |n− lm/2| → ∞ is equivalent to m |A− B/2| → ∞ and also
to d /∈ O(m−1). It is automatically satisfied whenever (A, B) is in a compact subset of
{(x, y) : x > 2y > 0}.
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3 The proofs via a discretized analogue to Theorem 2

We will explain our argument with a probability model by which the proof of Theorem 2
is reduced to a local central limit theorem. We start with the simple case when B ≈ A/2
as in [8]. Let {λj : 1 ≤ j ≤ m} denote the parts, in decreasing size, of a partition of n into
at most m parts of size at most `, padded with zeros at the end if necessary. Defining
λ0 := ` and λm+1 := 0, the gaps xi := λi − λi+1 satisfy the following two identities (see
Figure 2),

m

∑
i=0

xi = ` ;
m

∑
i=0

ixi = n . (3.1)

λ1
λ2

λi
λi+1

λm

ixi

1x1

xi

x1

`

m

x0

Figure 2: The total area n of a partition is composed of rectangles of area jxj

By the reduced geometric distribution with parameter p we mean the random variable
X with P(X = k) = p · qk where q := 1 − p. In [8], Takács sets {Xj : 0 ≤ j ≤ m}
to be a collection of independent reduced geometric random variables with parameter
p = 1/2. This distribution has the crucial property that for any set of values x0, . . . , xm,
the probability P(Xj = xj : j = 0, . . . , m) depends only on the sum ` := ∑m

j=1 xj and is
equal to pm+1q`. Let P(`) denote the sum of P(X = x) over all (m + 1)-vectors x with
coordinate sum `. If N(`) denotes the number of such vectors summing to `, we see
immediately that 1 ≥ P(`) = pm+1q`N(`), hence N(`) ≤ [pm+1q`]−1. This inequality is
good because P(`) is not that small: it is of order m−1/2. Now let N(`, n) count those
vectors satisfying both identities in (3.1) and P(`, n) be the probability that the geometric
variables lie in this set. Takács gave a sharp asymptotic estimate of P(`, n) ∼ cm−2 when
n = m2/2 + O(m3/2), thereby showing that N(`, n) ∼ cm−2[pm+1q`]−1.

Central limit theorems do not provide a sharp estimate when |n − m2/2| � m3/2.
However, because the constraints on the vectors counted by N(`, n) are linear, the theory
of large deviations [2] implies that P(`, n) is well estimated by “tilting” the independent
laws of the {Xj} so that one is in the central limit regime of the tilted laws. Having
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solved for the correct tilt, we may dispense with the large deviations theory and prove
the estimates directly. Tilting preserves the reduced geometric family, altering only the
parameters; it turns out that the correct tilt makes qj := 1− pj log-linear.

With cm, dm to be specified later, let

qj := e−cm−jdm/m , pj := 1− qj , Lm :=
m

∑
j=0

log pj.

Let Pm be a probability law making the random variables {Xj : 0 ≤ j ≤ m} independent
reduced geometrics with respective parameters pj. Define random variables Sm and Tm
by

Sm :=
m

∑
i=0

Xi ; Tm :=
m

∑
i=1

iXi , (3.2)

corresponding to the unique partition λ satisfying Xj = λj − λj+1. We first prove a
result similar to Theorem 2, except that the parameters c and d that solve integral Equa-
tions (2.1) and (2.2) are replaced by cm and dm satisfying the discrete summation equa-
tions (3.3) below. These equations say that ESm = ` and ETm = n. Writing this out,
using EXj = 1/pj − 1 = 1/

(
1− e−cm−dm j/m

)
− 1, gives

` =
m

∑
j=0

1
1− e−cm−dm j/m − (m + 1) , n = m

m

∑
j=0

j/m
1− e−cm−dm j/m −

m(m + 1)
2

. (3.3)

Let Mm denote the covariance matrix for (Sm, Tm). The entries may be computed
from the basic identity Var (Xj) = qj/p2

j , resulting in

Var (Sm) =
m

∑
j=0

e−cm−dm j/m(
1− e−cm−dm j/m

)2 (3.4)

Cov (Sm, Tm) =
m

∑
j=0

j
e−cm−dm j/m(

1− e−cm−dm j/m
)2 (3.5)

Var (Tm) =
m

∑
j=0

j2
e−cm−dm j/m(

1− e−cm−dm j/m
)2 . (3.6)

Theorem 4 (discretized analogue). Let cm and dm satisfy equations (3.3). Define αm, βm and
γm to be the normalized entries of the covariance matrix

αm := m−1Var (Sm) ; βm := m−2Cov (Sm, Tm) ; γm := m−3Var (Tm) ,

which are O(1) as m → ∞. Again, let A := `/m and B := n/m2 and ∆m := αmγm − β2
m.

Then
Nn(`, m) ∼ 1

2πm2
√

∆m
exp

{
m
(
−Lm

m
+ cm A + dmB

)}
. (3.7)
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Proof outline. The atomic probabilities Pm(X = x) depend only on Sm and Tm as

log Pm(X = x) =
m

∑
j=0

(
log pj + xj log qj

)
= Lm −

m

∑
j=0

(
cm + j

dm

m

)
xj = Lm − cm

(
m

∑
j=0

xj

)
− dm

m

(
m

∑
j=0

jxj

)
.

In particular, for any x satisfying (3.1),

log Pm(X = x) = Lm − cm`−
dm

m
n . (3.8)

The following are equivalent: (i) the vector X satisfies the identities (3.1); (ii) the pair
(Sm, Tm) is equal to (`, n); (iii) the partition λ = (λ1, . . . , λm) defined by λj − λj+1 = Xj
for 2 ≤ j ≤ m− 1, together with λ1 = `− X0 and λm = Xm, is a partition of n fitting
inside a m× ` rectangle. Thus, setting pm(`, n) := Pm [(Sm, Tm) = (`, n)] we have

Nn(`, m) =
pm(`, n)

Pm(X = x)
= pm(`, n) exp

[
m
(
−Lm

m
+ cm A + dmB

)]
. (3.9)

Comparing (3.7) to (3.9), the proof is completed by an application of the following LCLT,
for which a proof is sketched below. It is stated for an arbitrary sequence of parameters
p0, . . . , pm bounded away from 0 and 1, we use it with pj = 1− e−cm−dm j/m.

Denote by M(s, t) := [s , t] M [s , t]T the quadratic form corresponding to a matrix
M, then we can state the LCLT and its refinement as follows.

Lemma 5 (LCLT). Fix 0 < δ < 1 and let p0, . . . , pm be any real numbers in the interval
[δ, 1− δ]. Let {Xj} be independent reduced geometrics with respective parameters {pj}, Sm :=
∑m

j=0 Xj, and Tm := ∑m
j=0 jXj. Let Mm be the covariance matrix for (Sm, Tm), written

Mm =

(
αmm βmm2

βmm2 γmm3

)
,

Qm denote the inverse matrix to Mm, and ∆m = m−4 det Mm = αmγm − β2
m. Let µm and νm

denote the respective means ESm and ETm. Then

sup
a,b∈Z

m2
∣∣∣∣pm(a, b)− 1

2π(det Mm)1/2 e−
1
2 Qm(a−µm,b−νm)

∣∣∣∣→ 0 (3.10)

as m→ ∞, uniformly in the parameters {pj} in the allowed range. In particular, if the sequence
(am, bm) satisfies Qm(am − µm, bm − νm)→ 0 then

pm(am, bm) =
1

2π
√

∆mm2

(
1 + O

(
m−3/2

))
.



Counting partitions inside a rectangle 9

The following consequence is used to prove Theorem 3.

Corollary 6 (LCLT consecutive differences). LetN (a, b) := 1
2π(det M)1/2 e−

1
2 Q(a−µ,b−ν) be the

normal approximation in Equation (3.10). Using the notation of Lemma 5,

sup
a,b∈Z

∣∣∣∣p(a, b + 1)− p(a, b)−
(
N (a, b + 1)−N (a, b)

)∣∣∣∣ = O(m−4).

Sketch of the proofs of Theorems 2 and 3 and the LCLT Lemma 5

Theorem 2 follows from the discretized Theorem 4 after analyzing cm, dm (in particular
showing their existence and uniqueness), and their relation to c and d defined in the
introduction. Asymptotics follow from careful analysis of the error bounds.

Theorem 3 follows from Equation (3.9) and Corollary 6. Let

Lm(x, y) :=
m

∑
j=0

log(1− e−x−yj/m) .

Then if Am(x, y) = (∂/∂x)Lm(x, y) and Bm(x, y) = (∂/∂y)Lm(x, y), we have cm and dm
are the solutions to Am(cm, dm) = ` and B(cm, dm) = n/m. Let c′m, d′m be the solutions
to Am(c′m, d′m) = ` and Bm(c′m, d′m) = (n + 1)/m, and let ∆x = c′m − cm = O(m−2) and
∆y = d′m − dm = O(m−2) with these bounds obtained from an analysis of cm, c, dm, d.
See [5] for details.

Taylor expansion for L′m := Lm(c′m, d′m) around (cm, dm) and the Lm partials gives

−Lm(c′m, d′m) + (cm + ∆x)`+ (dm + ∆y)(n + 1)m−1 = −Lm(cm, dm) + cm`+ dm(n + 1)m−1 + O(m−3).

Then the consecutive differences from Sylvester’s unimodality can be expressed as a
sum of terms which can be individually bounded as follows,

Nn+1(`, m)− Nn(`, m) = pm(`, n) exp
[
−Lm + cm`+

dm

m
n
] [

edm/m − 1
]

(3.11)

+ [pm(`, n + 1)− pm(`, n)] exp
[
−Lm + cm`+

dm

m
(n + 1)

]
(3.12)

+ pm(`, n + 1)
(

e−L′m+c′m`+d′m(n+1)/m − e−Lm+cm`+dm(n+1)/m
)

. (3.13)

Since dm = d + O(m−1), Equation (3.9) gives that line (3.11) equals

Nn(`, m)

(
d
m

+ O(m−2)

)
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as long as d /∈ O(m−1). This holds when |A− B/2| /∈ O(m−1) as d = 0 when A = B/2
and the map taking (A, B) to (c, d) is Lipschitz.

The quantity on line (3.12) is O(m−4 ·m2Nn(`, m)) = O(m−2Nn(`, m)) since

[pm(`, n + 1)− pm(`, n)] ≤ |N (`, n + 1)−N (`, n)|+ O(m−4)

= O
(

m−2 ·
∣∣∣1− e

1
2 Qm(0,1)

∣∣∣)+ O(m−4) = O(m−4),

by Corollary 6, where Qm is the inverse of the covariance matrix of (Sm, Tm).

The quantity on line (3.13) is

pm(`, n + 1) e−Lm+cm`+dm(n+1)/m ψm = Nn(`, m)ψm edm/m + O(m−4 edm/m e−Lm+cm`+dmn/m ψm)

= O(m−3Nn(`, m)).

since pm(`, n + 1) = pm(`, n) + O(m−4), where

ψm := exp
[
− L′m + c′m`+ d′m(n+ 1)m−1−

(
−Lm + cm`+ dm(n + 1)m−1

) ]
− 1 = O(m−3).

Putting everything together, we reach the desired

Nn+1(`, m)− Nn(`, m) = Nn(`, m)

(
d
m

+ O(m−2)

)
. �

The proof of the LCLT Lemma 5 consists of several steps. First, assuming that the pjs
are arbitrary numbers in some interval [δ, 1− δ] we show that the constants αm, βm, γm
and ∆m are bounded below and above by positive constants depending only on δ.

We then estimate the characteristic function for a reduced geometric r.v. Xp with pa-
rameter p. For each δ ∈ (0, 1/2) there is a K such that simultaneously for all p ∈ [δ, 1− δ],∣∣∣∣log E exp(iuXp)−

(
i
q
p

u− q2

2p2 u2
)∣∣∣∣ ≤ Ku3 .

Finally, the proof of Lemma 5 comes from expressing the probability as an integral
of the characteristic function φ(s, t) := Eei(sS+tT), via the inversion formula, and then
estimating the integrand in various regions.

In order to estimate the error terms in the approximation of p(a, b) for Corollary 6 we
consider the partial differences and repeat the approximation arguments for the original
LCLT, estimating an expression of the form∣∣∣∣p(a, b + 1)− p(a, b)−

(
N (a, b + 1)−N (a, b)

)∣∣∣∣ = ∫
[−π,π]2

∣∣∣1− e−it
∣∣∣ ∣∣∣φ̂(s, t)− e−1/2M(s,t)

∣∣∣ dsdt.
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As in the analysis for the LCLT, we estimate the integrals in different regions where
φ̂ = φe−isE[S]−itE[T] behaves differently, and ultimately determine that the above integral
is O(m−4).

4 Limit shape

The limit shape of an unrestricted partition, i.e. the curve which approximates most
Young diagrams of λ ` n, was posed as a problem by Vershik and first answered by
Szalay and Turan; later Vershik and Yakubovich described the limit shape for singly
restricted partitions. The limit shape for partitions inside a rectangle in the regime
m, ` = Θ(

√
n) was first described by Petrov, where it is identified with a portion of the

curve e−x + e−y = 1, the limit shape of unrestricted partitions. Fluctuations have also
been obtained; see [5] for additional historical details and references.

Here, using the independent random variables Xi we can rederive the limit shape for
the partitions of n inside a rectangle. The existence, i.e. the concentration phenomenon,

of the limit curve follows from the fact that the maximum discrepancy max
j≤m

∣∣∣∣∣ j

∑
i=0

(Xi − 1/pi)

∣∣∣∣∣,
conditional on ∑m

i=0 Xi = `, is o(m) in probability; see [5] for a rigorous proof.

(A, B) = (1, 1/k)
k = 2, . . . , 15

(A, B) = (5/k, 1/k)
k = 2, . . . , 15

Limit curve of (A, B) = (1, 1/3)
and random partitions of size 120,
201 and 300.

Figure 3: Limit shapes of scaled partitions as m→ ∞.

We have λi = ` − (X0 + X1 + · · · + Xi−1) and hence E[λi] = ` − ∑i−1
j=0(1/pj − 1).
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Setting x = i/m we approximate the sum by an integral as m→ ∞, namely we have

y := E

[
λi

m

]
= A + x−

∫ x

0

1
1− e−c−td dt = A + x− 1

d
ln

(
exd+c − 1

ec − 1

)
,

and the limit curve of partitions scaled to the 1× A rectangle is given by points (x, y)
satisfying this equation, or equivalently

1 = (1− e−c)ed(A−y) + e−ce−dx , (4.1)

when A > 2B, and y = A(1− x) when A = 2B and d = 0; see Figure 3.
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