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P-partitions and p-positivity

Per Alexandersson∗ and Robin Sulzgruber†

Dept. of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Abstract. Using the combinatorics of α-unimodal sets, we establish two new re-
sults in the theory of quasisymmetric functions. First, we obtain the expansion of
the fundamental basis into quasisymmetric power sums. Secondly, we prove that
generating functions of reverse P-partitions expand positively into quasisymmetric
power sums. Consequently any nonnegative linear combination of such functions is
p-positive whenever it is symmetric. We apply this method to derive positivity results
for chromatic quasisymmetric functions and unicellular LLT polynomials.
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1 Introduction

Whenever a new family of symmetric functions is discovered, one of the most logical
first steps to take is to expand them in one of the many interesting bases of the space of
symmetric functions. This paradigm can be traced from Newton’s identities to modern
textbooks such as [17]. Of special interest are expansions in which all coefficients are
nonnegative integers. Such coefficients frequently encode highly nontrivial combinato-
rial or algebraic information.

A symmetric function is called p-positive if the expansion in the power-sum basis
has nonnegative coefficients. There are numerous results in the literature regarding p-
positivity, see for example [20, 19, 4, 21, 8, 2]. In particular, the expansion of a symmetric
function into power sum symmetric functions can be useful when one is working with
plethystic substitution [15], or evaluating certain polynomials at roots of unity [7, 19].

In this extended abstract we provide a uniform method for finding power sum ex-
pansions and proving p-positivity in many of the cases mentioned above. Our approach
requires a detour to quasisymmetric functions. There is a quasisymmetric extension
of p-positivity, namely positivity in a quasisymmetric power-sum basis. Quasisymmetric
power sums were recently introduced by C. Ballantine et al. [5]. They appear as duals of
noncommutative power sums defined by I. Gelfand et al. [9].
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Our first main result, Theorem 2.2, is an expansion of the fundamental quasisymmet-
ric functions Fn,S into quasisymmetric power sums Ψα:

Fn,S(x) = ∑
α

Ψα(x)
zα

(−1)|S\Sα|

Here the sum ranges over all compositions α of n such that the set S is α-unimodal, and
zα and Sα denote an integer factor and a set associated to α. All definitions are given in
Section 2.

Our second main result, Theorem 3.2, is the following statement: Let P be a finite
poset on n elements and KP(x) be the generating function of order-preserving maps
f : P→N+, so called P-partitions. Then

KP(x) = ∑
α�n

Ψα

zα
|L∗α(P, w)| = ∑

α�n

Ψα

zα
|O∗α(P)| .

Here w denotes an arbitrary natural labeling of P, L∗α(P, w) consists of certain α-unimodal
linear extensions of P, and O∗α(P) is a set of certain order-preserving surjections from P
onto a chain. These definitions are found in Section 3.

As a consequence, we can produce an expansion into power sums for any symmet-
ric function, for which the expansion in Gessel’s fundamental basis or in terms of P-
partitions is known. Moreover any symmetric function which is a nonnegative linear
combination of functions KP is automatically p-positive. As a bonus it now becomes
apparent that p-positivity of certain families of symmetric functions is really a special
case of a more general positivity phenomenon, namely Ψ-positivity, that encompasses
a larger class of quasisymmetric functions. In Section 4 we give a few examples of the
numerous implications of the above formula. The full paper [3] contains additional ap-
plications and results. Some exciting recent result related to this extended abstract are
due to by R. Liu and M. Weselcouch [14].

2 The Ψ-expansion of fundamental quasisymmetric func-
tions

In this section we briefly introduce the space of quasisymmetric functions and a few
relevant bases. For a more thorough background on quasisymmetric functions, we refer
the reader to the references [23, 16]. Afterwards, we define α-unimodality and present
the expansion of the fundamental basis into quasisymmetric power sums.
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2.1 Quasisymmetric functions

The monomial quasisymmetric function Mα, where α is a composition with ` parts, is de-
fined as

Mα(x) := ∑
i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
.

The functions Mα constitute a basis for the space of homogeneous quasisymmetric func-
tions of degree n as α ranges over all compositions of n.

Given a composition α � n with ` parts, let

Sα := {α1, α1 + α2, . . . , α1 + α2 + · · ·+ α`−1}.

The map α 7→ Sα defines the usual bijection between compositions of n and subsets
of [n − 1]. We let α ≤ β denote the fact that α is a refinement of β, that is, β can be
obtained from α by adding consecutive parts of α. Whenever α ≤ β, we can illustrate
this relationship with bars between parts of α, such that parts between bars add to parts
of β. For example

112|341|21|34|2 corresponds to α = 11234121342, β = 48372.

Finally, given a permutation σ ∈ Sn and compositions α ≤ β, we can partition σ into
α-subwords and β-blocks of words. For example,

α = 3132, β = 45, σ = 926345817 is partitioned as (926)(3)|(458)(17), (2.1)

where the first β-block is (926)(3), consisting of two α-subwords.

The fundamental quasisymmetric function Fn,S can be defined in two equivalent ways:

Fn,S(x) := ∑
j1≤j2≤···≤jn
i∈S⇒ji<ji+1

xj1 · · · xjn or Fα(x) := ∑
β≤α

Mβ(x),

where Fn,Sα
(x) and Fα(x) are equal for all compositions α � n.

Given a pair of compositions of n, α ≤ β, related by

α11α12 . . . α1,i1 |α21α22 . . . α2,i2 | · · · |αk1αk2 . . . αk,ik

let

π(α, β) :=
k

∏
j=1

(αj1)(αj1 + αj2) · · · (αj1 + αj2 + · · ·+ αj,ij).
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The quasisymmetric power sum Ψα is defined1 as

Ψα(x) := zα ∑
β≥α

1
π(α, β)

Mβ(x). (2.2)

For example, Ψ231 = 1
10M6 +

1
4M24 +

3
5M51 + M231. It was shown in [5, Thm. 3.11] that

quasisymmetric power sums refine the usual power sums as

pλ(x) = ∑
α∼λ

Ψα(x)

where the sum is taken over all compositions α that are a permutation of λ.

Let ω be the involution on quasisymmetric functions that sends Fn,S to F[n−1]\(n−S).
This extends the classical involution on symmetric functions, for which ωhλ = eλ, and
ω(pλ) = (−1)|λ|−`(λ)pλ. Then (see [5, Sec. 4]) we have that ω (Ψα) = (−1)|α|−`(α)Ψαr ,
where αr denotes the reverse of α.

2.2 The Ψ-expansion of the fundamental basis

A word σ1σ2 · · · σn is said to be unimodal if there is a k ∈ [n] such that

σ1 > · · · > σk < · · · < σn.

Given a permutation σ ∈ Sn and a composition α � n, we can partition σ into nonover-
lapping subwords with sizes given by α. A permutation σ is α-unimodal if each subword
determined by α is unimodal. Finally, a subset of [n − 1] is said to be α-unimodal if it
is the descent set of some α-unimodal permutation in Sn. There are various equiva-
lent characterizations of α-unimodal sets, and their properties are an interesting topic in
itself.

Example 2.1. Let α = 3513. Then the permutation σ = 7, 2, 3, 12, 9, 8, 6, 11, 4, 1, 5, 10 is α-
unimodal as the the four subwords

7, 2, 3 | 12, 9, 8, 6, 11 | 4 | 1, 5, 10

are unimodal. Hence the set DES(σ) = {1, 4, 5, 6, 8, 9} is α-unimodal.

The first main result is the following theorem:

Theorem 2.2. Let n ∈N and S ⊆ [n− 1]. Then

Fn,S(x) = ∑
α

Ψα(x)
zα

(−1)|S\Sα| , (2.3)

where the sum ranges over all compositions α of n such that S is α-unimodal.
1Here, zα is the standard quantity ∏i≥1 imi mi!, with mi being the number of parts of α equal to i.
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Sketch of proof. Expand both sides in the monomial basis and compare coefficients of
Mβ(x). It then suffices to prove that

∑
α∈R(β,γ)

(−1)|Sγ\Sα|

π(α, β)
=

{
1 if β ≤ γ,
0 otherwise,

(2.4)

where R(β, γ) is the set of all compositions α ≤ β such that Sγ is α-unimodal.

We now need some additional terminology from [5]. Let σ be a permutation and
α ≤ β be compositions. Consider the partitioning of σ into α-subwords and β-blocks
of subwords according to (2.1). We say σ ∈ Sn is consistent with α ≤ β if the following
conditions are satisfied:

(i) In each α-subword the maximum appears in last position.

(ii) The subwords in each β-block are sorted increasingly with respect to their maxima.

Let Cons(α, β) denote the set of permutations σ ∈ Sn that are consistent with α ≤ β.
For example, the permutation (4)(38)|(7)|(56)(219) lies in Cons(12123, 3155), but the
permutations (4)(38)|(7)|(65)(219) and (4)(38)|(7)|(59)(216) do not.

Using the hook-length formula for forests [12, Chap. 5.1.4, Ex. 20], one can show that
Cons(α, β)π(α, β) = n!. To prove (2.4) it therefore suffices to show that

∑
α∈R(β,γ)

|Cons(α, β)| (−1)|Sγ\Sα| =

{
n! if β ≤ γ,
0 otherwise.

(2.5)

This can be done by finding a bijection in the case β ≤ γ, and a sign-reversing involution
otherwise.

Theorem 2.2 implies two previously known results that also involve α-unimodal sets.
The first one is due to C. Athanasiadis and gives the p-expansion of a symmetric function
for which the fundamental expansion is known.

Corollary 2.3. ([4, Prop. 3.2], see also [1, Prop. 9.3]). Let n ∈ N and X = ∑S⊆[n−1] cSFn,S
be a symmetric function. Then

X(x) = ∑
λ`n

pλ(x)
zλ

∑
S is λ-unimodal

(−1)|S\Sλ|cS.

The second corollary is due to Y. Roichman, and gives a p-expansion of the Schur
functions.

Corollary 2.4. ([18, Thm. 4]) Let λ be a partition of n. Then

sλ(x) = ∑
µ`n

pµ(x)
zµ

∑
T∈SYT(λ)

DES(T) is µ-unimodal

(−1)|DES(T)\Sµ|.
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3 The Ψ-expansion of reverse P-partitions

In this section we combine α-unimodality and naturally labeled posets. We then present
a positive expansion of generating functions of P-partitions into quasisymmetric power
sums.

3.1 Posets and α-unimodality

We use the same terminology for posets as [24]. A labeled poset (P, w) consists of a (finite)
poset P together with a bijection w : P → [n]. A labeled poset is natural if w is order-
preserving, that is, x ≤P y implies w(x) ≤ w(y) for all x, y ∈ P. The Jordan–Hölder set of
a labeled poset is defined as

L(P, w) := {σ ∈ Sn : σ−1 ◦ w is order-preserving}.

Let α � n be a composition with ` parts. Let

Lα(P, w) := {σ ∈ L(P, w) : σ is α-unimodal}.

Moreover for σ ∈ Sn divide P into subposets

Pα
i (σ) := {x ∈ P : α1 + · · ·+ αi−1 < σ−1 ◦ w(x) ≤ α1 + · · ·+ αi}.

Let L∗α(P, w) denote the set of all permutations σ ∈ Lα(P, w) such that the subposet
Pα

i (σ) has a unique minimal element for all i ∈ [`]. For example, let P = {x, y, z} be
the poset with a single relation x <P y, and define a labeling w : P → [3] by w(x) = 1,
w(y) = 2 and w(z) = 3. Then L(P, w) = {123, 132, 312}. We have L3(P, w) = {123, 312}
and L21(P, w) = L(P, w). Moreover L∗3(P, w) = ∅ and L∗21(P, w) = {123}.

There is an equivalent interpretation of the set L∗α(P, w) in terms of order-preserving
surjections, which has the advantage of being independent of the labeling w. Let O(P)
denote the set of all order-preserving surjective maps f : P → [k] for some k ∈ N. The
type of such a map is defined as

(| f−1(1)|, . . . , | f−1(k)|)

and is a composition of n = |P| with k parts. Let Oα(P) denote the set of all maps
f ∈ O(P) with type α. Moreover, let O∗(P) denote the set of all maps f ∈ O(P) such
that for all y, z ∈ P with f (y) = f (z) there exists x ∈ P with f (x) = f (y) and x ≤P y and
x ≤P z. Finally set O∗α(P) := Oα(P) ∩O∗(P).

Let α be a composition with ` parts, and σ ∈ L∗α(P). Define a map fσ : P → [`] by
f (x) = i for all x ∈ Pα

i (σ) and all i ∈ [`]. It is not too difficult to prove the following:

Proposition 3.1. Let (P, w) be a naturally labeled poset with n elements, and let α be a compo-
sition of n. The the map defined by ϕ(σ) = fσ is a bijection ϕ : L∗α(P, w)→ O∗α(P).
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3.2 P-partitions

In this section we discuss reverse P-partitions of naturally labeled posets. For more
background we refer to [24, 23]. Let P be a finite poset. A reverse P-partition is an order-
preserving map f : P → {1, 2, . . . }, that is, x ≤P y implies f (x) ≤ f (y) for all x, y ∈ P.
Let Ar(P) denote the set of reverse P-partitions. The generating function of reverse P
partitions is defined as

KP(x) := ∑
f∈Ar(P)

∏
x∈P

x f (x).

We now state the main result of this section.

Theorem 3.2. Let (P, w) be a naturally labeled poset. Then

KP(x) = ∑
α�n

Ψα

zα
|L∗α(P, w)| = ∑

α�n

Ψα

zα
|O∗α(P)| . (3.1)

In particular, KP is Ψ-positive for any finite poset P.

Sketch of proof. It is well-known (see [23, Cor. 7.19.5]) that the expansion of reverse P-
partitions in into the fundamental basis is given by

KP(x) = ∑
σ∈L(P,w)

Fn,DES(σ)(x).

From Theorem 2.2 we obtain

KP(x) = ∑
α�n

Ψα(x)
zα

∑
σ∈Lα(P,w)

(−1)DES(σ)\Sα .

The proof can be finished by finding a sign-reversing involution on the set Lα(P, w) \
L∗α(P, w), which is omitted in this extended abstract. A similar involution was first
defined by B. Ellzey in [8, Thm. 4.1].

The following is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let P1, . . . , Pk be finite posets, a1, . . . , ak ∈N, and

X(x) =
k

∑
i=1

aiKPi(x).

Then X is Ψ-positive, and X is p-positive whenever X is symmetric.
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4 Consequences

Theorem 3.2 is a highly useful tool in proving p-positivity (or Ψ-positivity) of many
families of symmetric or quasisymmetric functions. In this extended abstract we focus
on two such families that have received considerable recent attention, the chromatic
quasisymmetric functions and certain LLT polynomials.

4.1 Chromatic quasi-symmetric functions

In [22] R. Stanley introduced the chromatic-symmetric function XG(x) attached to a finite
unlabeled graph G, which generalizes the chromatic polynomial of G. In [22, Cor. 2.7.]
he noted that ωXG(x) is p-positive. This definition and observation have recently been
generalized by several authors.

In [21] J. Shareshian and M. Wachs defined a quasisymmetric q-analogue XG(x; q) of
the chromatic symmetric function XG(x) that is attached to a finite labeled graph G. The
chromatic symmetric function XG(x) is recovered by setting q = 1 and forgetting the
labels. In [21, Conj. 7.6] they conjectured a positive p-expansion for ωXG(x; q) when G
belongs to a very special family of labeled graphs, namely the incomparability graphs of
natural unit interval orders. This conjecture was proven by C. Athanasiadis in [4].

B. Ellzey extended the definition of chromatic quasisymmetric functions to finite di-
rected graphs in [8]. We recall this definition now. Let G = (V, E) be a finite directed
graph. A proper vertex coloring (or just coloring) of G is a function κ : V → N+ such that
κ(u) 6= κ(v) for all directed edges (u, v) ∈ E. An ascent of a coloring κ is a directed edge
(u, v) in E such that κ(u) < κ(v). Denote the number of ascents of a coloring κ by asc(κ).
The chromatic quasisymmetric function indexed by G is defined as

XG(x; q) = ∑
κ

qasc(κ) ∏
v∈V

xκ(v),

where the sum ranges over all colorings of G.
The chromatic quasisymmetric function XG(x; q) of an undirected labeled graph as

defined by J. Shareshian and M. Wachs is equal to the chromatic quasisymmetric func-
tion corresponding to the acyclic orientation induced by the labels. In [8, Thm. 4.1]
B. Ellzey proved a considerable strengthening of the result of C. Athanasiadis, namely
that ωXG(x; q) is p-positive for any directed graph G for which XG(x; q) is a symmetric
function. Using the results of Section 3.2 we can improve as follows.

Theorem 4.1. Let G be a finite directed graph, and

ωXG(x; q) = ∑
α

cG
α (q)

Ψα(x)
zα

.

Then cG
α (q) ∈N[q] for all compositions α.
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Proof. It is not difficult to show ([2, 8]) that

ωXG(x; q) = ∑
θ

qasc(θ)KP(θ)(x),

where the sum ranges over all acyclic orientations θ of G, asc(θ) denotes the number of
edges of G that have the same orientation in G and in θ, and P(θ) denotes the transitive
closure of θ. The claim now follows from Corollary 3.3.

4.2 LLT polynomials

LLT polynomials can be seen as q-deformations of products of skew Schur functions.
They are named after A. Lascoux, B. Leclerc and J.-Y. Thibon who introduced them in
[13] using ribbon tableaux. A different combinatorial model for the LLT polynomials
was considered in [10], where each k-tuple of skew shapes indexes an LLT polynomial.
When each such skew shape consists of a single box, the corresponding LLT polynomial
is unicellular. Unicellular LLT polynomials have a central role in the proof of the shuffle-
conjecture due to E. Carlsson and A. Mellit [6], in which they introduced a combinatorial
model for the unicellular LLT polynomials using Dyck paths. In [2] this Dyck path model
was extended to certain directed graphs.

By modifying the definition of the chromatic quasisymmetric functions slightly, we
recover the unicellular LLT polynomials considered in [2]. Let G = (V, E) be a finite di-
rected graph without loops. The unicellular graph LLT polynomial indexed by G is defined
as

GG(x; q) = ∑
κ:V→N+

qasc(κ) ∏
v∈V

xκ(v),

where the sum is now taken over all functions (not just proper vertex colorings).
The functions GG(x; q) are quasisymmetric. In special cases they are known to be

symmetric and contain the family of unicellular LLT polynomials. It was observed in [2,
11] that ωGG(x; q + 1) is p-positive whenever GG(x; q) is a unicellular LLT polynomial.
We can now proof a much stronger statement.

Theorem 4.2. Let G be a finite directed graph without loops, and

ωGG(x; q + 1) = ∑
α

cG
α (q)

Ψα(x)
zα

.

Then cG
α (q) ∈N[q] for all compositions α.

Proof. It is known that

ωGG(x; q + 1) = ∑
S

q|S|KP(S)(x),
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where the sum ranges over all subsets S ⊆ E of (directed) edges of G that do not contain
a directed cycle, and P(S) denotes the transitive closure of the edges in S. Again the
claim follows from Corollary 3.3.

If in the model introduced in [10] each skew shape is a vertical strip, the resulting LLT
polynomial is called vertical strip LLT polynomial. Vertical strip LLT polynomials occur
naturally in the study of the delta operator and diagonal harmonics. The family of verti-
cal strip LLT polynomials contains (a version of) modified Hall–Littlewood polynomials.
Theorem 4.2 can easily be extended to also include vertical strip LLT polynomials.

5 Open problems

We conclude this extended abstract with two open problems. The first concerns the
coefficients in the Ψ-expansion of unicellular graph LLT polynomials, which we know to
be polynomials with nonnegative coefficients.

Conjecture 5.1. Let G be a finite oriented graph (no loops or multiple edges), and let

ωGG(x; q + 1) = ∑
α

cG
α (q)

Ψα(x)
zα

.

Then the polynomial cG
α (q) is unimodal2 for all compositions α.

Conjecture 5.1 has been verified by computer for all oriented graphs with six or fewer
vertices. The second open problem concerns the combinatorics of consistent permuta-
tions and order-preserving surjections.

Open Problem 5.2. Let P be a poset with n elements, and let β be a composition of n. Find a
bijection

ϕ : Sn ×Oβ(P)→
⋃

α≤β

Cons(α, β)×O∗α(P).

The fact that the two sets in Problem 5.2 have the same cardinality is equivalent to
Theorem 3.2 and can be obtained by extracting the coefficient of the monomial qua-
sisymmetric function Mβ on the left and right hand sides of (3.1). Currently we can give
such a bijection only in the simple case where P is a chain. It would be particularly
appealing if the solution to Problem 5.2 avoided sign-reversing involutions, and thus led
to a purely bijective proof of Theorem 3.2.

2Here we use the more common definition of unimodality, that is, cG
α (q) = ∑d

i=0 aiqi with a0 ≤ · · · ≤
ak ≥ · · · ≥ ad for some k.
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