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A new formula for Stanley’s chromatic symmetric
function for unit interval graphs and e-positivity

for triangular ladder graphs
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Abstract. In 1995 Stanley conjectured that the chromatic symmetric functions of the
graphs Pd,2, which we call triangular ladders, are e-positive. In this extended abstract
we summarize our confirmation of this conjecture, which is also an unsolved case of
the celebrated (3 + 1)-free conjecture. Gebhard and Sagan defined chromatic symmet-
ric functions in non-commuting variables that satisfy a deletion-contraction property
unlike the chromatic symmetric functions in commuting variables. We prove a new
signed combinatorial formula for the chromatic symmetric function of any unit inter-
val graph in the basis of elementary symmetric functions. Then we find that triangular
ladders are e-positive by very carefully defining a sign-reversing involution on our
signed combinatorial formula, which leaves us with certain positive terms and further
allows us to expand an already known family of e-positive graphs by Gebhard and
Sagan.
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1 Introduction

The chromatic symmetric function XG of a simple graph G, defined by Richard Stan-
ley [17], is a generalization of the chromatic polynomial defined by Birkoff [2] and has
received a lot of attention of late. These symmetric functions retain many properties of
chromatic polynomials, including evaluating to the number of acyclic orientations [17],
but do not satisfy a useful deletion-contraction property like chromatic polynomials do.
However, they do have connections to representation theory and algebraic geometry [12],
which has been a further motivation in their study and particularly behind the study of
their e-positivity and Schur-positivity. A symmetric function is e-positive (respectfully
Schur-positive) if XG can be written as a positive linear combination of elementary (re-
spectfully Schur) symmetric functions. Throughout this abstract we refer to the graph
as e-positive (respectfully Schur-positive) if XG is so.
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In 1995 Stanley [17] conjectured that if a poset is (3 + 1)-free then its incomparability
graph is e-positive, which is equivalent to the Stanley-Stembridge conjecture in 1993 [18].
Guay-Paquet [10] reduced this conjecture to showing that the incomparability graphs of
(3 + 1) and (2 + 2)-free posets are e-positive. These types of graphs are known as unit
interval graphs and have a connection to Jacobi-Trudi matrices [18]. Gasharov [8] has
proven that the incomparability graph of a (3 + 1)-free poset is Schur-positive, which is
weaker than the full conjecture since e-positivity implies Schur-positivity.

There have been some generalizations and further partial results on the (3 + 1)-free
conjecture. In 1995 Stanley proved that paths and cycles are e-positive [17] and their
functions are explicitly described in [20]. Coefficients of other graphs have been studied
in [13, 14]. Other works have focused on finding graph properties relating to e-positivity
with an emphasis on induced subgraphs [5, 11, 19]. Shareshian and Wachs [16] defined
a generalization of the chromatic symmetric function in the algebra of quasi-symmetric
functions. These also do not satisfy a deletion-contraction property, but do generalize
the (3 + 1)-free conjecture and are conjectured to be e-unimodal. This has further been
independently generalized by Ellzey [6] and Alexandersson and Panova [1] to circular
indifference graphs. Cho and Huh [3] provide a new family of e-positive graphs along
with a new proof to an old family that was first proven to be e-positive by Stanley [17].

In this abstract we summarize our results about the graphs, Pd,2, which are specifically
mentioned in Stanley’s original 1995 paper [p190, 16] where he wrote

“It remains open whether Pd,2 is e-positive”.

In order to do this, we use a generalization of XG by Gebhard and Sagan [9] to symmetric
functions in non-commuting variables, YG, that satisfies a deletion-contraction property.
Gebhard and Sagan find a new family of e-positive graphs by semi-symmetrizing their
chromatic symmetric functions in non-commuting variables. We use ideas from their pa-
per and expand their proven family of e-positive graphs. This expansion will include all
Pd,2, which we call triangular ladders. First we prove a new signed combinatorial formula
for all unit interval graphs in the basis of elementary symmetric functions. Then we
prove the e-positivity for triangular ladders by very carefully defining a sign-reversing
involution on the associated signed set that leaves us with certain positive terms.

In Section 2 we describe some of the background we will need including the defini-
tion of unit interval graphs and Gebhard and Sagan’s deletion-contraction property in
non-commuting variables. In Section 3 we describe our signed combinatorial formula
for expanding the chromatic symmetric function of any unit interval graph in the ele-
mentary basis. Our method is to repeatedly use the deletion-contraction property until
we have no edges and then reinterpret the coefficients in a combinatorial manner using
arc diagrams with arc markings, vertex labels and vertex markings. In Section 4 we ap-
ply our signed combinatorial formula to triangular ladders and summarize our results
about a new family of e-positive graphs that expands a family proven to be e-positive by
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Gebhard and Sagan [9]. Lastly, at the end of Section 4 we describe the fixed points for
the sign-reversing involution. Full results are in [4].

2 Background

There are many equivalent definitions for unit interval graphs with some equivalences
proven in [7]. Here we will describe unit interval graphs on vertices in [n] = {1, 2, . . . , n}
using a collection of intervals [a1, b1], [a2, b2], . . ., [al, bl] where ak ≤ bk are in [n] with
[a, b] = {a, a + 1, . . . , b}. Note that intervals can be chosen inefficiently. The graph has
an edge from i to j whenever i, j ∈ [ak, bk] for some k. In the literature there are special
families of unit interval graphs Pn,k that are formed from the intervals [1, k + 1], [2, k + 2],
. . ., [n− k, n] and this is the notation Stanley uses in his paper [17]. Many well-known
families of graphs including the complete graphs, Kn = Pn,n−1, and the paths, Pn = Pn,1
are unit interval graphs. Our focus is on when k = 2, Pn,2, which we call the triangular
ladders, TLn.

Example 1. From left to right we have TL7 = P7,2, K3 = P3,2 and the unit interval graph
formed from the intervals [1, 5], [4, 7] and [7, 8].
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The algebra of symmetric functions in non-commuting variables, NCSym, is generated
by several classical bases, all of which are indexed by set partitions. A set partition,
π = B1/B2/ · · · /Bl of [n], denoted π ` [n], is a collection of non-empty disjoint subsets
Bi ⊆ [n] called blocks that union to form the full set [n]. Rosas and Sagan [15] define
all the classical functions and give transition formulas between them. Our interest is in
the elementary basis. Given π ` [n] the elementary symmetric function in non-commuting
variables, eπ, is

eπ = ∑
(i1,i2,...,in)

xi1 xi2 · · · xin ,

which is summed over tuples (i1, i2, . . . , in) of positive integers where ij 6= ik if j and k
are in the same block of π.

Example 2. For 12 ` [2] and 12/3 ` [3] we have

e12 = x1x2 + x2x1 + x1x3 + x3x1 + x2x3 + x3x2 + · · · and

e12/3 = x1x2x1 + x2x1x2 + · · ·+ x1x2x2 + x2x1x1 + · · ·+ x1x2x3 + x2x1x3 + · · · .
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Though we work with NCSym, we are interested in symmetric functions. Define
ρ : NCSym → Λ to be the commuting map where f ∈ NCSym is mapped to f but we let
the variables commute.

Example 3. We have ρ(e12) = 2x1x2 + 2x1x3 + 2x2x3 · · · .

The bases for the algebra of symmetric functions, Λ, are indexed by integer partitions,
λ = λ1λ2 . . . λl, weakly decreasing lists of positive integers. We write λ ` n if all the λi
sum to n. The ith elementary symmetric function in commuting variables is

ei = ∑
j1<j2<···<ji

xj1 xj2 · · · xji

where for an integer partition λ = λ1λ2 . . . λl we define the elementary symmetric function,
eλ, to be

eλ = eλ1eλ2 · · · eλl .

Example 4. For 2 ` 2 and 21 ` 3 we have

e2 = x1x2 + x1x3 + x2x3 + · · · and e21 = e2e1 = x2
1x2 + x1x2

2 + · · ·+ 3x1x2x3 + · · · .

The elementary symmetric functions in NCSym and Λ are closely related. Define for
a set partition π ` [n] the integer partition λ(π) ` n, which is formed from the sizes of
all the blocks in π. For example, λ(14/235/67) = 322. Rosas and Sagan [15] proved for
π ` [n] that ρ(eπ) = π!eλ(π) where π! = λ(π)! = λ1!λ2! · · · λl !. We will call a function
f ∈ Λ e-positive if f can be written as a non-negative sum of elementary symmetric
functions.

A proper coloring κ of a graph G with vertex set V is a function

κ : V → {1, 2, . . .}

such that if u, v ∈ V are adjacent, then κ(u) 6= κ(v). Fixing an order for the vertices the
chromatic symmetric function in non-commuting is defined to be

YG = ∑
κ

xκ(v1)
xκ(v2) · · · xκ(vn)

where the sum is over all proper colorings κ of G. Because the variables don’t commute
the chosen order for vertices matters. If we let the variables commute then we get the
chromatic symmetric function in commuting variables, which we denote XG = ρ(YG). We
will call a graph G itself e-positive if XG is e-positive.

Example 5. All complete graphs Kn are e-positive with

YGn = e12···n and ρ(YKn) = XKn = n!en.
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The main result we present in this abstract is about a new family of e-positive graphs.
This family of graphs is formed by combining complete graphs and triangular ladders
in a certain way. Given a graph G with labels in [n] and a graph H with labels in [m] we
define their concatenation to be the graph G · H on vertices [n + m− 1] where the graph
on the first n vertices is isomorphic to G, the graph on the last m vertices is isomorphic
to H and no additional edges are included.

Example 6. For example K4 · TL4 is below.
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Though the XG don’t satisfy a deletion-contraction property Gebhard and Sagan [9]
showed that YG does. We define the deletion of an edge ε of G, G \ ε, to be the graph G
with edge ε removed. The contraction of an edge ε between vertices i and j is the graph
G after merging the vertices i and j and any multiedges created into a single edge.

Example 7. For G = P3 and ε the edge between 2 and 3 we have G \ ε to be the unit
interval graph on [3] with interval [1, 2] and G/ε = P2.

Roughly speaking, XG fails to have a deletion-contraction property due to its ho-
mogeneous degree where XG\ε and XG/ε have different degrees. In non-commuting
variables we can compensate for this. Define the induced monomial for j < n to be

xi1 xi2 . . . xij . . . xin−1 ↑j= xi1 xi2 . . . xij . . . xin−1 xij

where a copy of the jth variable is included at the end and extend this definition linearly.

Example 8. We have

e12 ↑2 = x1x2x2 + x2x1x1 + x1x3x3 + x3x1x1 + x2x3x3 + x3x2x2 + · · ·

=
1
2
(e12/3 + e13/2 − e1/23 − e123).

Proposition 9 (Deletion-Contraction, Gebhard and Sagan [9] Proposition 3.5). For G with
vertices V = [n] and an edge ε between vertices j and n we have

YG = YG\ε −YG/ε ↑j .
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Example 10. We can use deletion-contraction on P3 on edge ε between 2 and 3 to get

YP3 = YK2YK1 −YK2 ↑2= e12/3 − e12 ↑2 .

The formula for an induced eπ generally has many terms, but after symmetrizing
many of these terms cancel out. Gebhard and Sagan define equivalence classes on set
partitions that enable us to partially symmetrize functions. We will say two set partitions
π ` [n] and σ ` [n] are related, π ∼ σ, if

1. λ(π) = λ(σ) and

2. if A and B are blocks of π and σ respectively where n ∈ A and n ∈ B then |A| = |B|.

Let
(π) = {σ : σ ∼ π}. (2.1)

Example 11. The only non-singleton equivalence class for the set partitions of [3] is
(13/2) = {13/2, 1/23} and also the equivalence class for 1/234 is

(1/234) = {1/234, 134/2, 124/3}.

Two functions f , g ∈ NCSym are equivalent, f ≡ g, if the sum of the coefficients of the
terms associated to π in the same equivalence class are equal in the elementary basis.

Example 12. Because 13/2 ∼ 1/23

YP3 =
1
2
(e12/3 − e13/2 + e1/23 + e123) ≡

1
2
(e12/3 + e123).

Our study in [4], summarized here, is about whether graphs G themselves are e-
positive, which is a question about XG in fully commuting variables. Just like in Gebhard
and Sagan’s paper we show that YG is e-positive after partially symmetrizing variables
along the lines of these equivalence classes. To formalize this, we call f ∈ NCSym semi-
symmetrized e-positive if f ≡ g for some g ∈ NCSym that can be written as a non-negative
sum of elementary symmetric functions in non-commuting variables. We call a graph G
semi-symmetrized e-positive if YG is semi-symmetrized e-positive. It follows that if YG is
semi-symmetrized e-positive then certainly ρ(YG) = XG is e-positive and G is e-positive.
Semi-symmetrized e-positivity is a stronger condition than e-positivity.

Using partial symmetrizing, Gebhard and Sagan have a nice formula for inducing eπ.
Given an integer partition π ` [n − 1] for j < n define π ⊕j n ` [n] to be the integer
partition where we place n in the same block as j. For example 14/23⊕4 5 = 145/23.

Proposition 13 (Gebhard and Sagan [9] Corollary 6.1). For π ` [n− 1], j < n and b the
size of the block in π containing n− 1 we have

eπ ↑j≡
1
b
(eπ/n − eπ⊕jn).
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Example 14. To continue our deletion-contraction example for P3 we have

YP3 = e12/3 − e12 ↑2≡ e12/3 −
1
2
(e12/3 − e123) =

1
2
(e12/3 + e123).

3 A new formula for unit interval graphs

Let us delete and contract a unit interval graph G until we have a sum of graphs with
no edges. If YG is calculated similarly in the power-sum basis we will arrive at an
example of Stanley’s broken-circuit theorem ([17] Theorem 2.9). Since our interest is
in the elementary basis we will use Gebhard and Sagan’s [9] formula in Proposition 13,
which will give us a new signed combinatorial formula. In the case of triangular ladders,
we can define a sign-reversing involution and simplify the sum to only positive terms.

Theorem 15. Given a unit interval graph on n vertices with intervals [a1, 1], [a2, 2], . . . , [an, n]
let G′ be the same graph on [n− 1] after removing vertex n. Then,

YG = YG′YK1 −
n−1

∑
i=an

YG′ ↑i .

If we repeatedly use the formula in Theorem 15 we will have a sum of induced YH
where H is a graph with no edges. We will associate each induced H to an arc diagram
where each induction will be represented as an arc. An arc diagram is a drawing on n
vertices in a line numbered from left to right together with a collection of arcs (i, j), i < j.
The length of a diagram D, `(D), is the number of vertices minus one. Define an arc (i, j)
to be a left arc of j. The collection of arc diagrams, A(G), for a unit interval graph G with
intervals [a1, 1], [a2, 2], . . . , [an, n] are those where

• all vertices have at most one left arc and

• if we have an arc (i, j) then i, j ∈ [ak, k] for some k.

Given any arc diagram D ∈ A(G) define a(D) to be the number of arcs in the arc
diagram D and π(D) to be the set partition formed by the connected components of D.

Example 16. The diagram D ∈ A(TL9) below has π(D) = 135789/24/6 and a(D) = 6.
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Recall that when we induce an elementary symmetric function once by Proposition 13
we have a difference of two elementary symmetric functions after semi-symmetrizing.
Each single induction of YH is associated to a single arc in its arc diagram, and we will
keep track of the two subtracted terms by marking the arcs with tic marks. A tic mark
on arc (i, j) will split its block into pieces, refining the initial set partition π(D). Every
dot to the right of j including j will be in a different piece then those to the left of j. For
an arc diagram D′ with possible tic marks on arcs define π(D′) to be the set partition
whose blocks are the pieces and t(D′) to be the number of tic marks on the diagram D′.

Example 17. The diagram D′ below has a(D′) = 6, t(D′) = 3 and π(D′) = 13/2/4/57/6/89.

/ /
/

After inducing all the YH and using the formula in Proposition 13 we have a function
in NCSym equivalent to YG. We can combinatorially reinterpret the coefficients of this
function as the following set A′L(G) of arc diagrams. All D′ ∈ A′L(G) have

• an underlying arc diagram in A(G),

• each arc has a possible tic mark that breaks the connected component into pieces,

• a permutation labeling δ ∈ Sn where Sn is the set of permutations on [n],

• the permutation labeling increases from left to right on all pieces and

• one of the vertices in the right-most piece of each connected component is marked
with a star.

Example 18. Below we have D′ ∈ A′L(TL9) with permutation label 879643512 ∈ S9 and
a(D′) = 6, t(D′) = 3 and π(D′) = 13/2/4/57/6/89.

? ? ?
/ /

/

8 7 9 6 4 3 5 1 2

Example 19. The set A′L(TL2) has 6 elements listed below.

?
1 2

?
1 2

? ?
1 2

? ?
2 1

?/

1 2
?/

2 1

Theorem 20. For a unit interval graph G on n vertices,

YG ≡
1
n! ∑

D′∈A′L(G)

(−1)t(D′)eπ(D′).

Example 21. Using Theorem 20 on G = TL2 we have

YTL2 ≡
1
2!

(e12 + e12 + e1/2 + e1/2 − e1/2 − e1/2) = e12.
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4 Triangular ladders

Defining a sign-reversing involution on the signed-combinatorial set A′L(TLn) will prove
that TLn is e-positive. This involution will allow us to further conclude that all concate-
nations of complete graphs and triangular ladders are e-positive. Full details are in [4].

Theorem 22. The triangular ladder TLn, n ≥ 1, is semi-symmetrized e-positive and so e-
positive.

The involution that proves Theorem 22 can be used to prove that if G is a semi-
symmetrized e-positive graph then so is G · TLn, which extends the following result.

Theorem 23 (Gebhard and Sagan [9] Theorem 7.6 and 7.8). If a graph G is semi-symmetrized
e-positive then so is the concatenation G · Km and G · TL4.

Proposition 24. Any graph G such that

G = G1 · G2 · · ·Gl,

where Gi = TLni or Gi = Kni , is a semi-symmetrized e-positive graph, so also e-positive.

We end this abstract by describing the fixed points of our sign-reversing involution
ϕ : A′L(TLn)→ A′L(TLn), which requires some technical definitions. The concatenation of
two arc diagrams D1 on vertices [n] and D2 on vertices [m] is D1 ·D2, the arc diagram on
[n + m− 1] where D1 is on the first n vertices and D2 is on the last m. For a diagram D
denote D · D · · ·D by Dm where we have m copies of D. Arc diagrams associated to the
triangular ladders are concatenations of two kinds of arc diagrams. One is an interlacing
arc diagram, IL, on n ≥ 2 vertices, which has arcs (i, i + 2) for all possible i. Let Lm be
the length m IL diagram. The other is an interconnecting arc diagram, IC, which is an IL
diagram, but with the arc (1, 2) included. Let Cm be the length m IC diagram.

Example 25. From left to write we have L3, C3 and L2 · L1 · C1 · C2.

Note that IL diagrams of length 1 naturally break our diagrams into sections, which
are diagrams without any L1 in its decomposition. A section satisfies the IC-condition
if it contains a Cm, m ≥ 2, in its decomposition with only C1 to its left. Consider a
D ∈ A′L(TLn) with no tic marks that ends in P = L2k−1, k ≥ 1. On vertex n − 1 we
have a right endpoint of a connected component, so one vertex in this component will
be marked with a star. Write e(D) = i if the ith right-most vertex in the component
is marked with a star. From the (n − 1)st vertex we can count the number of vertices
going left in the same connected component until we reach a Cm or Lm with m ≥ 2. If
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we counted i vertices including the right-most vertex of Cm or Lm then let s(D) = i + 1.
If instead we counted until the left endpoint let s(D) be the number of vertices in the
connected component of n− 1. For ease we will write e(P) for e(D) and s(P) for s(D),
assuming that we are looking at P in the larger scope of diagram D.

Example 26. Diagram D ∈ A′L below satisfies the IC-condition, has only one section,
s(D) = 4, e(D) = 5 and π(D) = 123457/68.

? ?
1 2 3 4 5 6 7 8

Proposition 27. The fixed points are diagrams D ∈ A′L with no tic marks with the
following conditions. The diagram above satisfies all five conditions.

FP1. All sections satisfy the IC-condition except for the right-most ending at n if it is Ck
1,

k ≥ 0.

FP2. All P = L2k−1, k ≥ 1, in the decomposition have e(P) /∈ [a(P)/2 + 1, s(P)− 2].

FP3. All P = L2k−1, k ≥ 1, in the decomposition with e(P) = s(P)− 1 are immediately
preceded by L2j · Cm

1 , j, m ≥ 1, with e(L2j) = s(L2j).

FP4. All P = L2k−1, k ≥ 1, in the decomposition that end before n have e(P) 6= s(P).

FP5. All P = Lk, k ≥ 1, in the decomposition that are followed by P = Lm, m ≥ 1, have
e(P) 6= s(P).

Example 28. There are 6 fixed points for TL3 listed below.

?
1 2 3

?
1 2 3

?
1 2 3

?
1 2 3

?
1 2 3

?
1 2 3

By computer computation all unit interval graphs up to 7 vertices are semi-symmetrized
e-positive. It can be conjectured that all unit interval graphs satisfy this stronger condi-
tion. Also, by Stanley’s work the fixed points mentioned above should have a connection
to acyclic orientations. For these two reasons there may be more to learn in this direction.
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