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Abstract. The coinvariant algebra Rn is a well-studied Sn-module that is a graded
version of the regular representation of Sn. Using a straightening algorithm on mono-
mials and the Garsia-Stanton basis, Adin, Brenti, and Roichman(2005) define modules
Rn,µ, that refine the grading of Rn, and they describe the Frobenius image of Rn,µ in
terms of standard Young tableaux with certain descents. Motivated by the Delta Con-
jecture of Macdonald polynomials, Haglund, Rhoades, and Shimozono (2016) define a
module Rn,k that extends the coinvariant algebra. Also motivated by the Delta Conjec-
ture, Benkart et al. (2018) defined a crystal structure in terms of the minimaj statistic
that up to some twisting has character equal to the Frobenius image of Rn,k. We gener-
alize the results of Adin, Brenti, and Roichman by defining modules Rn,k,µ that refine
Rn,k and give a combinatorial description of the Frobenius image. This description not
only refines and simplifies some of the results of Haglund, Rhoades, and Shimozono,
but also gives a simpler method of obtaining their results. Additionally, these modules
give a representation theoretic interpretation for the characters of crystals that Benkart
et al. use to build up their minimaj crystal.
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1 Introduction

The classical coinvariant algebra Rn is constructed as follows: let the symmetric group
Sn act on the polynomial ring Q[x1, x2, . . . , xn] by permutation of the variables x1, . . . , xn.
The polynomials that are invariant under this action are called symmetric polynomials,
and we let In be the ideal generated by symmetric polynomials with vanishing constant
term. Then Rn is defined as the algebra obtained by quotienting Q[x1, x2, . . . , xn] by In,
that is

Rn :=
Q[x1, x2, . . . , xn]

In
. (1.1)

Since symmetric functions in n variables are generated by the elementary symmetric
functions ed, we have that:

In = 〈e1, e2, . . . , en〉. (1.2)
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Since In is homogeneous and invariant under the action of Sn, the coinvariant algebra
is a graded Sn-module. The irreducible representations of Sn are indexed by partitions
of n, and we let Sλ denote the irreducible representation corresponding to λ, and we let
χλ

µ be the character of Sλ evaluated at an element of type µ.
Given a representation V of Sn, the Frobenius image of V, denoted Frob(V) has the

following formula
Frob(V) = ∑

λ`n
cλsλ, (1.3)

where cλ is the multiplicity of Sλ in V and sλ is the Schur function associated to λ. For
Rn, Chevalley [3] showed that the Frobenius image of Rn is a sum over standard Young
tableaux of shape λ, that is that

Frob(Rn) = ∑
T∈SYT(n)

ssh(T) (1.4)

If V is a graded representation of Sn with degree d component Vd, then we can also
consider the Frobenius image of Vd for all d. This data can be combined into a single
function called the graded Frobenius image, which is defined as follows:

grFrob(V; q) =
∞

∑
d=0

qdFrob(Vd). (1.5)

Lusztig (unpublished) and Stanley [7] showed that,

grFrob(Rn; q) := ∑
T∈SYT(n)

qmaj(T)sshape(T). (1.6)

A further refinement of Rn is given as follows: define

PEµ := span{m ∈ Q[x1, . . . , xn] : λ(m) E µ}, (1.7)

P/µ := span{m ∈ Q[x1, . . . , xn] : λ(m) / µ} (1.8)

where m are monomials, λ(m) is the exponent partition of m, and / is the dominance
order on partitions. Then let QEµ and Q/µ be the projections of PEµ and P/µ onto Rn
respectively. Next define

Rn,µ := QEµ/Q/µ. (1.9)

This is a refinement of the grading since the degree d component of Rn is equal to⊕
µ`d

Rn,µ. (1.10)
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Adin, Brenti, and Roichman [1] show that Rn,µ is zero unless µ is a partition with at
most n− 1 parts such that the differences between consecutive parts are at most 1. They
also show that in the case that Rn,µ is not zero, the multiplicity of Sλ in Rn,µ is given by
the number of standard Young tableaux of shape λ with descent set equal to the descent
set of µ. Where a descent of a partition µ is a value i such that µi > µi+1.

The Delta Conjecture, introduced by Haglund, Remmel and Wilson [5] as a general-
ization of the Shuffle Theorem (at the time still a conjecture), is the conjectural equality
of three families of formal power series of symmetric functions in two indeterminates q
and t. One of the three families is defined in terms of certain Macdonald polynomial
eigenoperators and the other two are defined in terms of certain statistics on labeled
Dyck paths. By its definition, the Delta Conjecture is intimately related to the combina-
torics of labeled Dyck paths, but it is also related to a number of different combinatorial
objects such as parking functions and ordered set partitions, making it a rich area of
research.

One shortcoming of the Delta Conjecture is that, as defined, the quantities involved
are all just formal power series without any algebraic or geometric interpretations that
could be used to study them. With a view towards remedying this, Haglund, Rhoades,
and Shimozono [6] gave a generalize of the coinvariant ideal by defining the ideal

In,k := 〈xk
1, xk

2, . . . xk
n, en, en−1, . . . , en−k+1〉, (1.11)

for a positive integer k ≤ n. They then define a generalized coinvariant algebra as

Rn,k :=
Q[x1, . . . , xn]

In,k
. (1.12)

This is connected to the Delta Conjecture because they show that

(revq ◦ω)grFrob(Rn,k; q) (1.13)

is equal to one of the four expressions Risen,k(x; q, 0), Risen,k(x; 0, q), Valn,k(x; q, 0), or
Valn,k(x; 0, q), where Risen,k and Valn,k are the quantities appearing in the Delta Conjec-
ture that are defined in terms of labeled Dyck Paths, and ω is the standard involution
on symmetric functions. They thus gave an algebraic interpretation of a special case of
the Delta Conjecture.

The expression in (1.13) also appears in the work of Benkart, Colmenarejo, Harris,
Orellana, Panova, Schilling, and Yip [2] as the character a crystal defined in terms of a
minimaj statistic on ordered multiset partitions.

As before, Rn,k is a graded Sn-module and we can refine the grading as follows.

Definition 1.1. Let µ be a partition with at most n parts. Next define SEµ and S/µ to be the
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projections of PEµ and P/µ onto Rn,k. We then define

Rn,k,µ := SEµ/S/µ. (1.14)

We determine the multiplicities of Sλ in Rn,k,µ, thus extending the results of Adin,
Brenti, and Roichman on Rn,µ to Rn,k,µ and refining the results of Haglund, Rhoades and
Shimozono.

Theorem 1.2. The module Rn,k,ρ is zero unless ρ fits in an (n− 1)× k rectangle and ρi− ρi+1 ≤
1 for i > n− k. In the case that Rn,k,ρ is not zero, the multiplicity of Sλ in Rn,k,ρ is given by

|{T ∈ SYT(λ) : Desn−k+1,n(ρ) ⊆ Des(T) ⊆ Des(ρ)}|. (1.15)

This result can be used to recover the graded Frobenius image of Rn,k as described
by Haglund, Rhoades, and Shimozono. Furthermore, the methods that we use are much
simpler than the methods they use.

Also motivated by the Delta Conjecture, Benkart, Colmenarejo, Harris, Orellana,
Panova, Schilling, and Yip [2] define an alternative algebraic interpretation of the quan-
tities Risen,k(x; q, 0), Risen,k(x; 0, q), Valn,k(x; q, 0), and Valn,k(x; 0, q) as the character of a
certain crystal structure that is built up from smaller crystals. The way that these smaller
crystals break up the whole crystal corresponds exactly to how the modules Rn,k,µ de-
compose Rn,k. More precisely, for the correct choice of µ each of these smaller crystals
has characters equal to

(revq ◦ω)Frob(Rn,k,µ). (1.16)

Thus Rn,k,µ give a module theoretic interpretation of Benkart et al.’s crystal structure.

2 Definitions and Background

2.1 Descents and Monomials

An important component of the results of [1] on Rn is the use of a certain monomial
basis for Rn. We will recall this basis and the generalization of this basis given in [6] for
Rn,k. This basis for Rn will be indexed by permutations, and will be defined in terms of
the descents of the corresponding permutation.

Given a permutation σ ∈ Sn, i is a descent of σ if σ(i) > σ(i + 1). We denote by
Des(σ) the set of descents of σ. We denote by di(σ), the number of descents of σ that are
at least as large as i, that is

di(σ) := |{i, i + 1, . . . , n} ∩ Des(σ)|. (2.1)
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Finally for two integers i, j such that 1 ≤ i ≤ j ≤ n we let Desi,j(σ) denote the set of
descents of σ that are between i and j inclusively, that is

Desi,j(σ) := Des(σ) ∩ {i, i + 1, . . . , j− 1, j}. (2.2)

For example if σ = 31427865 ∈ S8, then

Des(σ) = {1, 3, 6, 7}, (2.3)
(d1(σ), . . . , d8(σ)) = (4, 3, 3, 2, 2, 2, 1, 0), and (2.4)

Des2,6(σ) = {3, 6}. (2.5)

Descents are used to define a set of monomials which descend to a basis for Rn, see
[4].

Definition 2.1. Given a permutation σ ∈ Sn, the Garsia-Stanton monomial or simply de-
scent monomial associated to σ is

gsσ :=
n

∏
i=1

xdi(σ)
σ(i) . (2.6)

These monomials descend to a basis for Rn.

For example, if σ = 31427865 ∈ S8, then gsσ = x4
3x3

1x3
4x2

2x2
7x2

8x1
6.

These monomials are generalized by Haglund, Rhodes, and Shimozono in [6] to
(n, k)-descent monomials that are indexed by ordered set partitions of n with k blocks.
Alternatively they can be indexed by pairs (π, I) consisting of a permutation π ∈ Sn
and a sequence i1, . . . , in−k such that

k− des(π) > i1 ≥ i2 ≥ . . . ≥ in−k ≥ 0. (2.7)

This is done as follows:

Definition 2.2. Given a permutation π ∈ Sn and a sequence I = (i1, i2, . . . , in−k) such that

k− des(π) > i1 ≥ i2 ≥ . . . ≥ in−k ≥ 0, (2.8)

the (n, k)-descent monomial associated to (π, I) is

gsπ,I := gsπxi1
π(1)x

i2
π(2) . . . xin−k

π(n−k) (2.9)

These monomials descend to a basis for Rn,k.
As an example if σ = 31427865 ∈ S8, k = 6, and I = (1, 0), then

gsσ,I = gsσ · x1
3x0

1 = x5
3x3

1x3
4x2

2x2
7x2

8x1
6. (2.10)
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2.2 Permutation and Partitions

The way that Adin, Brenti, and Roichman[1] make use of the classical descent monomial
basis is by using a basis for Q[x1, . . . , xn] given by Garsia in [4]. This basis is the set
{gsπeµ}π∈Sn,µ`n, where

eµ = eµ1eµ2 . . . eµ`(µ)
. (2.11)

In making use of this basis it is necessary to associate certain permutations and par-
titions to monomials. Our results also use these, so we recall them here.

The index permutation of a monomial m = ∏n
i=1 xpi

i is the permutation that rear-
ranges the indices of the monomial to have decreasing exponents, that is it is the unique
permutation π, such that the following hold:

1. pπ(i) ≥ pπ(i+1)

2. pπ(i) = pπ(i+1) =⇒ π(i) < π(i + 1)

We denote the index permutation of m as π(m).
Next, the exponent partition of a monomial is the partition consisting of the indi-

vidual exponents of the monomial written in decreasing order. We denote the exponent
partition of m as λ(m).

If λ is the exponent partition of a descent monomial, then λn = 0 and λi − λi+1 ≤ 1.
We call a partition that satisfies these conditions a descent partition. If λ is the exponent
partition of an (n, k)-descent monomial, then λ has at most n parts, and it has parts of
size less than k. We call such partitions (n, k)-partitions. The complementary partition
of a monomial m is the partition that is conjugate to (λi − di(π))n

i=1, where π = π(m)
and λ = λ(m). We denote the complementary partition of m as µ(m).

To clarify these definitions we present an example.

Example 2.3. Let n = 8, k = 5, I = (2, 1, 1) and let

m = x6
1x2x3x2

4x4
6x7x2

8 = x6
1x4

6x2
4x2

8x2x3x7, (2.12)

then

π(m) = 16482375, (2.13)
λ(m) = (6, 4, 2, 2, 1, 1, 1, 0), (2.14)

Des(π(m)) = {2, 4, 7}, (2.15)

gsπ(m) = x3
1x3

6x2
4x2

8x2x3x7, (2.16)

µ(m)′ = (3, 1), (2.17)
µ(m) = (2, 1, 1), and (2.18)

gsπ(m),I = x5
1x4

6x3
4x2

8x2x3x7. (2.19)
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The final key component is a partial ordering on monomials of a given degree to-
gether with a result on how multiplying monomials by elementary symmetric functions
interacts with this partial order. For a proof of Proposition 2.5 we refer the reader to [1].

Definition 2.4. For m1, m2 monomials of the same total degree, m1 ≺ m2 if one of the following
holds:

1. λ(m1) / λ(m2)

2. λ(m1) = λ(m2) and inv(π(m1)) > inv(π(m2))

Where / is the strict dominance order on partitions.

This partial order is useful because of how it interacts with multiplication of mono-
mials and elementary symmetric functions. This interaction is encapsulated in the fol-
lowing proposition:

Proposition 2.5 (Adin-Brenti-Roichman [1]). Let m be a monomial equal to xp1
1 . . . xpn

n , then
among the monomials appearing in m · eµ, the monomial

n

∏
i=1

x
p(π(i))+u′i
π(i) (2.20)

is the maximum with respect to ≺, where π is the index permutation of m.

2.3 Standard Young Tableaux

Our main results come in the form of counting certain standard Young tableaux.
A Ferrers diagram is a collection of unit boxes which, since we are using English

notation, are justified to the left and up. The lengths of the rows of a Ferrers diagram
form a partition which we call the shape of the Ferrers diagram. A standard Young
tableau of size n is a Ferrers diagram containing n boxes where the boxes are assigned
the values 1, 2, . . . , n such that the values increase along rows and down columns. We
denote the set of standard Young tableaux of size n by SYT(n). For a partition µ, we let
SYT(µ) denote the set of all standard Young tableaux of shape µ.

An integer i is a descent of a standard Young tableaux T if the box containing i + 1
is strictly below the box containing i. We denote by Des(T) the set of all descents of T.
Furthermore given two integers 1 ≤ i ≤ j ≤ n we define Desi,j to be the set of descents
of T that are between i and j inclusively.

As examples, consider the following Young tableaux:

T1 = 1 4 6 7

2 5 8

3

T2 = 1 3 4 7

2 5 6 8
T3 = 1 2 4 7 8

3 5 6
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T1, T2, T3 are standard Young tableaux. The shape of T1 and S1 is (4, 3, 1), the shape
of T2 and S2 is (4, 4), and the shape of (T3) and S3 is (5, 3). The descent sets of these
tableaux are as follows: Des(T1) = {1, 2, 4, 7}, Des(T2) = {1, 4, 7}, and Des(T3) = {2, 4}.

Next, Des5,7(T1) = Des5,7(T2) = {7}, and Des5,7(T3) = ∅

3 Descent representations of Rn,k

In the case of the classical coinvariant algebra, Adin, Brenti, and Roichman determine
the isomorphism type of Rn,ρ by comparing the graded traces of the actions of Sn on
Q[x1, . . . , xn] and on Rn. We will follow a similar path, but instead of considering the
action of Sn on Q[x1, . . . , xn], we will consider its action on the space of rational polyno-
mials in n variables with individual powers at most k− 1, that is

Pn,k := spanQ{x
p1
1 xp2

2 . . . xpn
n : p1, p2, . . . , pn < k}. (3.1)

We begin by giving a straightening Lemma:

Lemma 3.1. If m = ∏n
i=1 xpi

i is a monomial in Pn,k (that is pi < k for all i), then

m = gsπ,Ieν + ∑ . (3.2)

Where π = π(m); ∑ is a sum of monomials m′ ≺ m; I is the length n− k sequence defined
by i` = µ′` − µ′n−k+1, where µ is the complementary partition of m; and ν is specified by:

1. ν′` = µ′` for ` > n− k

2. ν′` = µ′n−k+1 for ` ≤ n− k

Furthermore ν consists of parts of size at least n− k + 1.

This Lemma gives rise to a basis for Pn,k which will be key to relating how Sn acts
on Pn,k to how it acts on Rn,k.

Proposition 3.2. The set Dn,k consisting of products gsπ,Ieν where ν is a partition with parts of
size at least n− k + 1 and (λ(gsπ,I) + ν′)1 < k form a basis for Pn,k.

Proposition 3.3. Let p be the projection from Q[x1, . . . , xn] to Rn,k and let m be a monomial in
Pn,k. Then

p(m) = ∑
π,I

απ,I gsπ,I (3.3)

where απ,I are some constants, and the sum is over pairs (π, I) such that λ(gsπ,I) E λ(m).

This Proposition gives the following Corollary:
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Corollary 3.4. Rn,k,ρ is zero unless ρ is the exponent partition of an (n, k)-descent monomial,
which occurs precisely when ρ is an (n, k) partition such that the last k parts form a descent
partition.

This basis allows us to express the action of τ ∈ Sn on Pn,k in terms of its action on
Rn,k with the basis of (n, k)-Garsia-Stanton monomials. That is, for some constants αφ,J

τ(gsπ,I) = ∑
φ,J

αφ,J gsφ,J , =⇒ τ(gsπ,Ieν) = ∑
φ,J

αφ,J gsφ,Jeν. (3.4)

We now move to the Lemmas that will allow us to prove our main result.

Lemma 3.5. Given an (n, k)-partition µ and an (n, k)-descent partition ν there exists a (n, k)-
partition ρ such that µ = ν + ρ if and only if Des(ν) ⊆ Des(µ). If it exists, ρ is unique.

Example 3.6. As an example of the Lemma 3.5, let n = 8, k = 6 then let

µ = (5, 5, 3, 3, 1, 1, 1, 0), (3.5)

ν1 = (2, 2, 1, 1, 0, 0, 0, 0), (3.6)

and
ν2 = (3, 3, 2, 2, 1, 1, 0, 0). (3.7)

Then Des(µ) = {2, 4, 7}, Des(ν1) = {2, 4}, and Des(ν2) = {2, 4, 6, 8}.
We then have that Des(ν1) ⊆ Des(µ), and that µ− ν1 = (3, 3, 2, 2, 1, 1, 1, 0) is a partition.

On the other hand, Des(ν2) 6⊆ Des(µ), and µ− ν2 = (2, 2, 1, 1, 0, 0, 1, 0) is not a partition.

Lemma 3.7. Given an (n, k)-partition µ and a set S ⊆ Desn−k+1,n(µ), there is a unique pair
(ν, ρ) such that µ = ν + ρ and ν is the exponent partition of an (n, k)-descent monomial with
Desn−k+1,n(ν) = S, and ρ is an (n, k)-partition with ρ1 = ρ2 = . . . = ρn−k+1.

We give an example of how Lemma 3.7 works.

Example 3.8. Let n = 8, k = 6, S = {4}, and let

µ = (5, 5, 3, 3, 1, 1, 1, 0), (3.8)

then
ν = (4, 4, 2, 2, 1, 1, 1, 0), (3.9)

and
ρ = (1, 1, 1, 1, 0, 0, 0, 0). (3.10)

We now give a proof of Theorem 1.2
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Proof of Theorem 1.2. The determination of when Rn,k,ρ is zero is from Corollary 3.4.
Next we define an inner product on polynomials by 〈m1, m2〉 = δm1m2 for two mono-

mials m1, m2, and then extending bilinearly. We then consider the graded trace of the
action of τ ∈ Sn on Pn,k defined for the monomial basis by

TrPn,k(τ) := ∑
m
〈τ(m), m〉 · q̄λ(m) (3.11)

where qλ = ∏n
i=1 qλi

i for any partition λ. Adin, Brenti, Roichman show that

TrQ[x1,...,xn](τ) = ∑
λ`n

χλ
µ

∑T∈SYT(λ) ∏n
i=1 qdi(T)

i

∏n
i=1(1− q1q2 . . . qi)

(3.12)

(where µ is the cycle type of τ). From this we can recover TrPn,k(τ) by restricting to
powers of q1 that are at most k− 1. Doing this gives

∑
λ`n

χλ
µ ∑

T∈SYT(λ),ν
q̄λDes(T) q̄ν. (3.13)

Where the ν’s are partitions such that (λDes(T))1 + ν1 < k, and λDes(T) is the descent
partition with descent set T.

Alternatively, we can calculate TrPn,k(τ) with the basis from Proposition 3.2, this gives

TrPn,k(τ) = ∑
σ,I,ν
〈τ(gsσ,Ieν), gsσ,Ieν〉q̄λ(gsσ,I)q̄ν′ (3.14)

= ∑
σ,I,ν
〈τ(gsσ,I), gsσ,I〉q̄λ(gsσ,I)q̄ν′ (3.15)

= ∑
λ,ν

TrRn,k(τ; q̄λ)q̄λq̄ν′ (3.16)

where the ν’s are partitions with parts of size at least n− k + 1 such that (λ(gsσ,I))1 +
(ν′)1 < k, and TrRn,k(τ; q̄λ) is the coefficient of q̄λ in the graded trace of τ acting on Rn,k.

We now consider the coefficient of q̄ρ for some partition ρ. Using the first calculation
and Lemma 3.5, the inner sum can be reduced to T such that Des(T) ⊆ Des(ρ), so that

∑
λ`n

χλ
µ|{T ∈ SYT(λ), Des(T) ⊆ Des(ρ)}|. (3.17)

Looking at the second calculation and using Lemma 3.7 gives

∑
S⊆Desn−k+1,n(ρ)

TrRn,k(τ; q̄λS), (3.18)

where λS is the exponent partition of some (n, k)-descent monomial gsσ,I with

Desn−k+1,n(λ(gsσ,I)) = S. (3.19)
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Together this gives that

∑
λ`n

χλ
µ|{T ∈ SYT(λ) : Des(T) ⊆ Des(ρ)}| = ∑

S⊆Desn−k+1,n(ρ)

TrRn,k(τ; q̄λS). (3.20)

We want to further refine this result by showing that

∑
λ`n

χλ
µ|{T ∈ SYT(λ) : S ⊆ Des(T) ⊆ Des(ρ)}| = TrRn,k(τ; q̄λS) (3.21)

for any specific S′. We do this by induction on |λS′ |. The base case is λS′ = ∅ is trivial. If
we take ρ = λS′ , then λS′ will appear in the sum since we can take the ν from Lemma 3.7
to be 0, and all other λS’s will be smaller since the corresponding ν’s will be non-empty.
Thus by the inductive hypothesis,

∑
λ`n

χλ
µ|{T ∈ SYT(λ) : S′ 6⊆ Des(T) ⊆ Des(ρ)}| = ∑

S(S′
TrRn,k(τ; q̄λS), (3.22)

subtracting this from our result gives the desired refinement. This then proves the Theo-
rem since the exponent partition of any (n, k)-descent monomial gsσ,I appears when we
take ρ = λ(gsσ,I).

Example 3.9. Let n = 8, k = 6, ρ = (5, 3, 2, 2, 1, 1, 1), λ = (4, 3, 1), then Des1,2(ρ) = {1, 2},
and Des3,8 = {4, 7}.

The standard Young tableaux T of shape λ with {4, 7} ⊆ Des(T) ⊆ {1, 2, 4, 7} are as
follows:

1 4 6 7

2 5 8

3

1 3 4 7

2 6 8

5

1 3 4 7

2 5 6

8

1 2 4 7

3 5 6

8

1 2 4 7

3 6 8

5

1 2 6 7

3 4 8

5

1 2 3 4

5 6 7

8
Therefore by Theorem 1.2, the coefficient of Sλ in Rn,k,ρ is 7.

Theorem 1.2 is related to the a crystal structure that was defined by Benkart, Col-
menarejo, Harris, Orellana, Panova, Schilling, and Yip [2]. Like Rn,k, the crystal structure
that they define is motivated by the Delta Conjecture, and has graded character equal
to (revq ◦ ω)grFrob(Rn,k; q). This crystal is built up from crystal structures on ordered
multiset partitions in minimaj ordering with specified descents sets, and the characters
of these smaller crystals is given in terms of skew ribbon tableaux. The algebras Rn,k,ρ
play the same role as these smaller crystals.



12 Kyle Meyer

This connection immediate once we rewrite the result of Theorem 1.2 as the following:

ω(Frob(Rn,k,ρ)) = sγ′

p

∏
i=1

edi . (3.23)

where we let di be the difference between the ith and (i− 1)th descents of ρ, with d1
being the first descent, and γ is the skew ribbon shape with rows of lengths (n− (d1 +
d2 + . . . + ddes(ρ)), ddes(ρ), ddes(ρ)−1, . . . , dp+1).
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