

# **Candidate for the crystal** $B(-\infty)$ for the queer Lie superalgebra

Ben Salisbury<sup>†</sup> Central Michigan University ben.salisbury@cmich.edu

**Travis Scrimshaw** The University of Queensland tcscrims@gmail.com



### Abstract

It is shown that the direct limit of the semistandard decomposition tableau model for polynomial representations of the queer Lie superalgebra exists, which is believed to be the crystal for the upper half of the corresponding quantum group. An extension of this model to describe the direct limit combinatorially is given. Furthermore, it is shown that the polynomials representations may be recovered from the limit in most cases.

### **Bottom of** $B(-\infty)$ for type q(3)



# Quantum groups and Cartan data

Let  $I_0 = \{1, \dots, n-1\}$  and  $I = I_0 \sqcup \{\overline{1}\}$ . Denote the standard basis vectors of  $\mathbb{Z}^n$  by  $\epsilon_1, \ldots, \epsilon_n$  and define  $\alpha_i = \epsilon_i - \epsilon_{i+1}$  for each  $i \in I_0$ . Set

$$\Lambda^{-} = \left\{ \lambda = -\sum_{i=1}^{n} \lambda_{i} \epsilon_{i} \in \mathbb{Z}_{\leq 0}^{n} : \begin{array}{l} \lambda_{i} \geq \lambda_{i+1} \text{ and } \lambda_{i} = \lambda_{i+1} \text{ implies} \\ \lambda_{i} = \lambda_{i+1} = 0 \text{ for all } i = 1, \dots, n \end{array} \right\}$$

Equip  $\Lambda^-$  with a partial order  $\lambda \leq \mu$  if and only if  $\mu - \lambda \in \Lambda^-$ . An element  $\lambda = -\lambda_1 \epsilon_1 - \cdots - \lambda_n \epsilon_n$  in  $\Lambda^-$  will be henceforth be identified with the strict partition  $w_0\lambda = (\lambda_n, \dots, \lambda_1)$ .

# Abstract q(n)-crystals

#### **Definition (Grantcharov** *et al.*, 2015)

An abstract q(n)-crystal is an abstract gl(n)-crystal  $\mathcal{B}$  together with maps  $e_{\overline{1}}, f_{\overline{1}} \colon \mathcal{B} \longrightarrow \mathcal{B} \sqcup \{0\}$  such that 1. wt( $\mathcal{B}$ )  $\subseteq \mathbb{Z}_{>0}^{n}$ ;

2. wt( $e_{\overline{1}}b$ ) = wt(b) +  $\alpha_1$  provided  $e_{\overline{1}}b \neq 0$ ;

3. wt( $f_{\overline{1}}b$ ) = wt(b) –  $\alpha_1$  provided  $f_{\overline{1}}b \neq 0$ ;

## q(n)-crystals

**Definition (Grantcharov** *et al.,* 2014; Gillespie *et al.,* 2018)

Let *T* be a semistandard decomposition tableau of shape  $w_0\lambda$ .

- 1. Suppose  $i \in I_0$ . Then  $e_i T$  and  $f_i T$  are computed using  $\mathfrak{gl}(n)$ -crystal rules.
- 2. If i = -1, consider the subword w of read(T) consisting of only the letters 1 and 2.
  - (a) If the leftmost letter in *w* is 1, then  $e_{\overline{1}}T = 0$ . Otherwise  $e_{\overline{1}}T$  is the tableau obtained from *T* by changing the 2-box corresponding to the leftmost 2 in *w* to a 1-box.
  - (b) If the leftmost letter in *w* is 2, then  $f_{\overline{1}}T = 0$ . Otherwise  $f_{\overline{1}}T$  is the tableau obtained from *T* by chang-

# **Candidate for** $B(-\infty)$

Denote the set of all *dual marginally large* semistandard tableaux for q(n) by SDT $(-\infty)$ . For  $i \in I$ ,  $e_i$  and  $f_i$  may be defined as on  $SDT(\lambda)$  with the additional requirement that dual marginal largeness must be preserved by pushing in/out "trivial" columns.

#### **Theorem (Salisbury–Scrimshaw)**

1. Suppose  $\lambda \leq \mu$ . Then there exists a q(n)-crystal embedding

```
\operatorname{SDT}(\lambda) \otimes \mathcal{T}_{-\lambda} \hookrightarrow \operatorname{SDT}(\lambda + \mu) \otimes \mathcal{T}_{-\lambda - \mu}
```

such that  $L^{\lambda} \otimes t_{-\lambda} \mapsto L^{\lambda+\mu} \otimes t_{-\lambda-\mu}$ .

2. The collection  $\{\text{SDT}(\lambda) \otimes \mathcal{T}_{-\lambda}\}_{\lambda \in \Lambda^-}$  together with the inclusion maps above form a directed system.

4. for any  $b, b' \in \mathcal{B}$ ,  $f_{\overline{1}}b = b'$  if and only if  $b = e_{\overline{1}}b'$ ; 5. if  $3 \le i \le n - 1$ , we have

(a) the operators  $e_{\overline{1}}$  and  $f_{\overline{1}}$  commute with  $e_i$  and  $f_i$ , (b) if  $e_{\overline{1}}b \in \mathcal{B}$ , then  $\varepsilon_i(e_{\overline{1}}b) = \varepsilon_i(b)$  and  $\varphi_i(e_{\overline{1}}b) = \varphi_i(b)$ .

# **Decomposition tableaux**

**Definition (Grantcharov** *et al.*, 2014)

Let  $\lambda = (\lambda_n, ..., \lambda_1)$  be a strict partition. Define  $\ell(\lambda)$  to be the number of  $1 \le i \le n$  such that  $\lambda_i \ne 0$ .

- 1. The *shifted Young diagram of shape*  $\lambda$  is an array of boxes in which the *i*-th row has  $\lambda_{n+1-i}$  cells, and is shifted i - 1 units to the right with respect to the top row.
- 2. A word  $u = u_1 u_2 \cdots u_N$  is a *hook word* if there exists  $1 \le k \le N$  such that

 $u_1 \ge u_2 \ge \cdots \ge u_k < u_{k+1} < \cdots < u_N.$ 

- 3. A semistandard decomposition tableau of shifted shape  $\lambda$  is a filling *T* of  $\lambda$  with letters from  $\{1, 2, ..., n\}$  such that
  - (a) the word  $v_i$  formed by reading the *i*-th row from left to right is a hook word of length  $\lambda_{n-i+1}$ , and

ing the 1-box corresponding to the leftmost 1 in w to a 2-box.

For a  $\lambda \in \Lambda^-$ , define  $L^{\lambda} \in SDT(\lambda)$  to be the tableau whose *i*-th row from the bottom contains only the letter *i*.

Theorem (Grantcharov *et al.*, 2014)

For  $\lambda \in \Lambda^-$ , the set SDT( $\lambda$ ) together with the operators defined above form an abstract q(n)-crystal isomorphic to the crystal of the irreducible highest weight q(n)-module with highest weight  $w_0\lambda$ . Moreover, a unique lowest weight vector in SDT( $\lambda$ ) is  $L^{\lambda}$ .

3. The set SDT( $-\infty$ ) together with  $e_i$ ,  $f_i$  defined above is an abstract q(n)-crystal such that

 $\operatorname{SDT}(-\infty) \cong \varinjlim \operatorname{SDT}(\lambda) \otimes \mathcal{T}_{-\lambda}.$ 

#### **Theorem (Salisbury–Scrimshaw)**

Let  $\lambda \in \Lambda^-$  such that  $\lambda_i < \lambda_{i+1}$  for all  $i \in I_0$ . As q(n)-crystals using the modified tensor product rule, the connected component of  $SDT(-\infty) \otimes \mathcal{R}_{w_0\lambda}^{\bar{\vee}}$  generated by  $L^{-\infty} \otimes r_{w_0\lambda}^{\vee}$  is isomorphic to SDT( $\lambda$ ).

# The q(3)-crystal SDT( $\lambda$ ) with $\lambda = -3\epsilon_1 - \epsilon_2$



- (b)  $v_i$  is a hook subword of maximal length in  $v_{i+1}v_i$ for  $1 \le i \le \ell(\lambda) - 1$ .
- 4. Set read(T) to be the word obtained by reading T in rows from right to left starting at the top.
- 5. For  $\lambda \in \Lambda^-$ , let SDT( $\lambda$ ) denote the set of all semistandard decomposition tableaux of shape  $w_0\lambda$ .

## References

- [1] M. Gillespie, G. Hawkes, W. Poh, and A. Schilling, Characterization of queer supercrystals, 2018.
- [2] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, and M. Kim, Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux, Trans. Amer. Math. Soc. 366 (2014), no. 1, 457–489.
- , Crystal bases for the quantum queer superalgebra, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 7, 1593–1627.