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INTRODUCTION

The nonvanishing problem asks if a coefficient of a poly-
nomial is nonzero. Many families of polynomials in alge-
braic combinatorics admit combinatorial counting rules and
simultaneously enjoy having saturated Newton polytopes
(SNP). Thereby, in amenable cases, nonvanishing is in the
complexity class NP N coNP of problems with “good charac-
terizations”. This suggests a new algebraic combinatorics
viewpoint on complexity theory.

This paper focuses on the case of Schubert polynomials.
These form a basis of all polynomials and appear in the
study of cohomology rings of flag manifolds. We give a
tableau criterion for nonvanishing, from which we deduce
the first polynomial time algorithm. These results are ob-
tained from new characterizations of the Schubitope, a
generalization of the permutahedron defined for any sub-
set of the n x n grid, together with a theorem of A. Fink,
K. Mészaros, and A. St. Dizier (2018), which proved a con-
jecture of C. Monical, N. Tokcan, and A. Yong (2017).

DECISION PROBLEMS

A decision problem is a problem with a yes or no answer
given some input. Some problems have quick algorithms
while others seem to require a lengthy search to reach an
answer. To better understand these difference, problems
are sorted into complexity classes.

Some complexity classes with examples:
e NP: LP (dx > 0, Ax=b?)

e CONP: Primes

e P: LP and Primes

e NP-complete: Graph coloring

Problem 1 When do these coincide?
oP = NP

o NP S coNP

o NP N coNP = P

NP- NP N coNP coNP-
complete N P ® CON P complete

— R

Figure 1: Many believe the equalities in Problem 1 do not
hold, giving the diagram above.

Nonvanishing

In algebraic combinatorics we often study polynomial fami-

lies:
Fo = Z Caol™ = Z wt(s) € Z|xq, ..., xy]

Q seS

Example 2 Below are a few different families:

o With o = X\, use F, = s,, the Schur polynomial, and

S = SSYT(A). Forinstance, sy 1) = v319 + 1125 Since

SSYT((2,1)):{ SEANERE }
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e Witho = G, use Fo = x, Stanley’s chromatic symmet-
ric polynomial, and S = {proper colorings of G}.

e Witho = w € S, Use I, = Sy,, but there are many
choices for S.

In this framework, we can discuss the complexity of the
nonvanishing problem:

Problem 3 What is the complexity of deciding c,, ¢, # 0, as
measured in the input size of a and {>?

n our cases of interest, ¢, € Z>p has combinatorial
positivity, which implies nonvanishing(F,) € NP.

For more information: arXiv:1810.10361

NEWTON POLYTOPES

To F,,, we can associate its Newton polytope:
Newton(F%) = conv{a : co o # 0} CR"

C. Monical-N. Tokcan-A. Yong '17 defined that F,, has sat-
urated Newton polytope (SNP) if

B € Newton(F,,) <= cg, # 0.

Example 4 Let f = :1:1:1:% +:13?f:13% o 5131:1:% +x129. Then f does
not have SNP since (2,2) € Newton(f) but xz5 does not
appear in the monomial expansion of f.
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Figure 2: Newton(f) of f in Example 4

SNP combined with a polynomial-size halfspace descrip-
tion of Newton(F%) implies nonvanishing(F,) € coNP. There-
fore, in many cases nonvanishing(F%) € NP N coNP.

Example 5 Below is an example and non-example of SNP:
e s, has SNP and nonvanishing(s,) € P

e\, does not have SNP for G arbitrary, and
nonvanishing(xc) € NP. In fact, for each fixed n > 3
it is NP-complete.

If some F,, with SNP is such that Nonvanishing(F%) is NP —
complete, then a polynomial-size halfspace description of
Newton(F5) implies

coNP N NP — complete # ) = NP = coNP.

Potential Application

Conjecture 6 (R. P. Stanley '95) If G is claw-free (i.e., it
contains no induced K 3 subgraph), then x is Schur pos-
itive.

Conjecture 7 (C. Monical ’17) If x» is Schur positive,
then it is SNP

Combining these gives

Conjecture 8 (A. Adve-C. Robichaux-A.Yong, '18) If G
Is claw-free then x . is SNP

Holyer proved n-coloring claw-free graphs is NP-
complete. Therefore:

An polynomial-size halfspace description proves
nonvanishing(xqjaw-free ) 1S CONP. This implies NP =
coNP.

SCHUBERT POLYNOMIALS

Schubert polynomials form a linear basis of all polynomi-
als Z|xy,z9,x3,...]. They were introduced by A. Lascoux—
M.-P. Schitzenberger to study the cohomology ring of the
flag manifold.

Forwg=nn—1---21€ 5y,

—1 n—-2

Suwy(®1, ..., xn) =) Xy Ty,

Otherwise, for w # wg, apply Newton’s divided difference
operator |
f=r"

0jf = —,
Ly — Lg+1
recursively using weak Bruhat order to define G,,. To each
w € S there is a unigue code,

COdG(UJ) — (01, C2y - - 7CL) < Zé@’

where ¢; counts the number of boxes in the i-th row of the
Rothe diagram D(w) of w.

Let Schubert be nonvanishing(&,,). The INPUT is code(w) =
(Cl, e CL) with cr, > 0 and a € Zéo.

Theorem 9 (A. Adve-C. Robichaux-A.Yong, ’18)
Schubert € P.

—or w € Sy, let Tab(w, a) be the fillings of D(w) with «;. many
k’s, where entries in each column are distinct, and any en-
try in row i is < . We prove Theorem 9 using the following:

Theorem 10 (A. Adve-C. Robichaux-A.Yong, ’18)
caw # 0 if and only if Tab(D(w), o) # 0.

n general #Tab(D(w), o) > cauw-

Example 11 For w = 31524, the tableaux in the set
Uq Tab<(D(w), a):

1 1]¢ 11 ¢ 11
.2 2-—.21o—.3 s
T LT LT
11]¢ 11 ¢ 11
.2 3-—.3 2-—.3 3| ¢
T LT LT

Hence, for inStance, C<27171)731524 > O bUt C<4>’31524 — O

Fix n € Z-o and let D C [n]°. We call D a diagram and
visualize D as a subset of an n x n.

In 2017, C. Monical-N. Tokcan-A. Yong defined the Schu-
bitope Sp, a polytope defined for D C [n]?, and conjectured
the following:

Theorem 12 (A. Fink-K. Meszaros-A. St. Dizier, ’17)
Sp = Newton(Sy).

Our results give a polynomial time algorithm to check if a
lattice point is in §p. This more general result gives a poly-
nomial time algorithm for any polynomial family whose New-
ton polytopes are Schubitopes.

Additionally, we show that while the nonvanishing problem
IS easy, the counting problem is hard:

Theorem 13 (A. Adve-C. Robichaux-A.Yong, ’18)
ca,w IS #P-complete.

Proof Sketch of Theorem 9

e By Theorem 12, ¢, # O ifand only if o € Sp.
e Prove o € Sp if and only if Tab(D, ) # 0.

e Then introduce a new polytope P(D, «) whose integer
points biject with Tab(D, «).

e Integer linear programming is hard, but P(D, «) is totally
unimodular. Now use LPfeasibility € P.

CONCLUSION

e We described an algebraic combinatorics paradigm for
complexity on theoretical computer science.

e Conversely, complexity gives some new perspectives on
algebraic combinatorics.

e We obtain new results about Schubert polynomials and
the Schubitope.
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