Kashiwara’s crystal graphs (cont.)

Fact. \(V(\lambda) \) has a crystal basis \(B(\lambda) \); when \(q \to 0 \) we have
\[
 f_i \cdot e_j = B(\lambda)
\]
Encode as colored directed graph
\[
f_i(b) = b' \iff b \rightarrow b'.
\]
Example. \(\mathfrak{g} = \mathfrak{sl}_2, \lambda = (3, 3, 1), \text{blue: } e_1, e_2, e_3, \text{ red: } f_1, f_2, f_3\).

The combinatorial atomic decomposition

Let \(B(\lambda)^n \subset B(\lambda) \) consist of dominant weight vertices.

Definition. An atomic decomposition of \(B(\lambda) \) is a partition
\[
 B(\lambda)^n = \bigcup_{b \in B(\lambda)} B(\lambda, b),
\]
where \(H(\lambda) \subset B(\lambda)^n \), \(b \in B(\lambda) \) is a distinguished vertex, and \(B(\lambda, b) \) contains exactly one vertex of dominant weight \(\nu \), for \(\nu \leq wt(b) \).

In particular, if \(wt(b) = \mu \), then
\[
w^\nu_b = \sum_{\nu \in B(\lambda, b)} x^\nu.
\]

Definition. A \(t \)-atomic decomposition of \(B(\lambda) \) is also endowed with a statistic \(c : H(\lambda) \to \mathbb{Z}_{\geq 0} \) satisfying
\[
A_{\lambda, b}(\mu) = \sum_{\nu \in B(\lambda, b)} c^\nu.
\]

Main ingredients for the atomic decomposition

- **Various properties of the dominance order** — studied by Stembridge [98], we derive additional structural properties in classical types;
- A modified crystal graph structure on the vertices of \(B(\lambda)^n \) and its properties.

Modified crystal structure

Assume that the Dynkin diagram consists of a type \(A_{n-1} \) part, labeled \(1, \ldots, r - 1 \), and an extra node labeled \(r \).

Definition. Given any positive root \(\alpha \in W_0 \), consider \(w \in W \) satisfying \(\epsilon_0(\alpha) = \alpha \) of smallest length, and let
\[
\ell^w_{\alpha} = \ell^w_0 - \ell^w_{\alpha}.
\]

Definition. Endow \(B(\lambda)^n \) with a modified crystal graph structure, by restricting to those arrows
\[
b \rightarrow \ell^w_{\alpha}(b) \quad \text{for which } (w(\alpha), b) \in B(\lambda)^n \quad \text{is a co-core}.
\]
We studied relations between \(\ell^w_{\alpha}(b) \).

Theorem. (LeCouvey, L.) Under certain conditions
\[
\ell^w_{\alpha}(b) = \ell^w_{\alpha}(b)^{w_0} = 0 \quad \text{if } (\alpha, b) \in W(\alpha, \alpha_2),
\]
\[
\ell^w_{\alpha}(b) = \ell^w_{\alpha}(b)^{w_0} = 0 \quad \text{if } (\alpha, b) \in W(\alpha, \alpha_1).
\]

Main result in types \(A_{n-1}, \, C_n, \, D_n \)

Fix a partition \(\lambda \) — dominant weight. In type \(C_n \), assume
\[n > (|\lambda| + 1)/2 \]
and \(n > |\lambda| \) in type \(D_n \) (stable range).

Theorem. (LeCouvey, L.) The connected components of \(B(\lambda)^n \) are isomorphic to intervals \([\bar{0}, \bar{\mu}]\) in the dominance order, via the projection sending vertices to their weights.

This is a \(t \)-atomic decomposition of \(B(\lambda) \) in type \(A_{n-1} \), and an atomic decomposition in types \(C_n \) and \(D_n \).

Idea of proof

- Consider the “small intervals” of the dominance order (rhombi, pentagons, or hexagons).
- Verify the commutation of the modified crystal operators on these intervals.
- Use this property to iteratively lift the structure of the dominance order to that of the modified crystal poset.

Type \(B_n \)

Complication. Even in the stable case, we have covers labeled by a root \(\epsilon_1, \ldots, (10 \times 10)^t \) (or \(b^t \)).

Since \(\epsilon_1 \in B(1) \) (short root), we need \(\ell^w_{\alpha} \) for \(\alpha = \epsilon_1 \).

Solution. For \(w \in W \) of smallest length with \(w(\alpha_0) = \alpha = \epsilon_1 \), let
\[
\ell^w_{\alpha} = w f_{\alpha \epsilon_1}^{-1}.
\]

Theorem. (LeCouvey, L.) Simulare to types \(A_{n-1}, \, C_n, \, D_n \), in the corresponding stable range.

Example

\[
B(\lambda)^n \quad \text{for } \lambda = (3, 2, 1) \text{ in type } A_2 \text{ as SSYT:}
\]

\[
\begin{array}{c}
(1, 2) \\
(1, 3) \\
(2, 3) \\
(1, 2, 3)
\end{array}
\]

We get the atomic decomposition of the character:
\[
\chi^\lambda = w^\lambda_{(1,2),1} + w^\lambda_{(2,3),2} + w^\lambda_{(3,1,1),3} + w^\lambda_{(2,2,1),4}.
\]

Geometric interpretation: the geometric Satake correspondence

For a reductive group \(G \), it realizes geometrically \(V(\lambda) \) for \(G'_2 \), as the intersection cohomology \(H^\bullet(\mathcal{S}(\hat{G})) \) of a Schubert variety in the affine Grassmannian.

\(H^\bullet(\mathcal{S}(\hat{G})) \) has the truncation filtration:
\[
H^\bullet(\mathcal{S}(\hat{G})) \approx H^\bullet(\mathcal{S}(\hat{G})) \subset \text{other summands}.
\]
This gives \(K_{\lambda, b}(b) \) when restricted to the weight spaces.

\(H^\bullet(\mathcal{S}(\hat{G})) \) has a basis of classes of Schubert varieties inside \(\mathcal{X}(\hat{G}) \), which are indexed by \(b \in P(\lambda) \).

Interpretation. According to the atomic decomposition \(\chi^\lambda = \sum A_{\lambda, b}(\mu) w^\mu \), where \(w^n = \sum x^n \), there is a refinement of the truncation filtration, with successive quasipositive isomorphisms to \(H^\bullet(\mathcal{S}(\hat{G})) \), \(b \in P(\lambda) \).

Future work

- Extend the results to affine type \(A \) (with A. Schulze).
- Defining on \(B(\lambda)^n \) a statistic computing \(K_{\lambda, b}(b) \), constructed recursively on the components, starting from its value on the minimal vertex (calculated in [LIL18a]).

References

Contact: cedric.leouvey@umontreal.ca, cleinart@albany.edu