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Introduction

We introduce a family of bijections between bases and special orientations of an
oriented matroid, based on the picture of Topological Representation Theorem.
This generalizes the core construction in Backman–Baker–Yuen (FPSAC 2018) on
bijections between bases and the Jacobian group of a regular matroid.
Connections with Bernardi bijections of planar maps, and orientation activity of
Gioan and Las Vergnas.

Setting

M : an oriented matroid on E.
M ′ =M t {f}, M̃ =M t {g}: generic single-element extension (resp. lift) of M .
For each circuit (resp. cocircuit) C of M , σ(C) (resp. σ∗(C)) is the unique
orientation of C such that the sign of g (resp. f) in its lift (resp. extension) is +.
An orientation O of M is (σ, σ∗)-compatible if every signed circuit (resp. cocircuit)
compatible with O is oriented according to σ (resp. σ∗).

Important Example (lexicographic data): Fix a total ordering < of E together
with a reference orientation of E. Orient each circuit (resp. cocircuit) according to the
reference orientation of its minimal element.

Theorem (BSY 2018+)

Given a basis B, let O(B) be the orientation of M in which we orient each e 6∈ B
according to its orientation in σ(C(B, e)) and each e ∈ B according to its orientation
in σ∗(C∗(B, e)). Then βσ,σ∗ : B 7→ O(B) is a bijection between bases and (σ, σ∗)-
compatible orientations of M .
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Corollary

The number of (σ, σ∗)-compatible orientations of an oriented matroid equals the
number of bases for any pair of (generic) σ, σ∗.

Remark: Compare with the theorem of Greene–Zaslavsky on the number of bounded
regions in a hyperplane arrangement.

Planar Bernardi Bijections

Let G be a planar map with a root v. Given a spanning tree T of G, walk counter-
clockwise around T from v. Orient e ∈ T away from v and e 6∈ T “opposite” to the
tour.
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Proposition

Planar Bernardi bijections are topological bijections.

Enumeration of Activity Classes

Fix < on E. For an orientation O, let e1 < . . . < eι (resp. e′1 < . . . < e′ε) be
the internally (resp. externally) active elements, i.e., each ei (resp. e′j) is the minimal
element of some signed cocircuit (resp. circuit) compatible with O.
For k = 1, 2, . . . , ι, denote by Fk the union of all signed cocircuits compatible with O
whose minimal elements are at least ek; dually construct F ′1, . . . , F ′ε. The activity class
of O consists of all orientations obtained from reversing any union of components from
Fι, Fι−1 \ Fι, . . . , F1 \ F2;F

′
ε, F

′
ε−1 \ F ′ε, . . . , F ′1 \ F ′2.
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Proposition (Gioan–Las Vergnas 2005; BSY 2018+)

The number of activity classes of an oriented matroid equals the number of bases.
Proof: When σ, σ∗ are induced by the same lexicographic data, (σ, σ∗)-compatible
orientations form a system of representatives of the set of activity classes.

Proof of the Theorem (Sketch)

Main Ingredient: The Oriented Matroid Program (M̃ ′, g, f ).

Step 1: M̃ can be represented by an affine pseudosphere arrangement with g as the
hyperplane at infinity. The regions are labeled by (σ-compatible) orientations of M .
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Step 2: Using f ∈ M ′ as an objective functional, each region has an optimum
with respect to f . The regions whose optima are bounded (not lying on g) correspond
precisely to (σ, σ∗)-compatible orientations. Each such optimum is a vertex, which is
the intersection of pseudospheres that form a basis of M .
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Step 3: The optimisation map yields a bijection, verify that it is the same as βσ,σ∗.
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