Topological Bijections for Oriented Matroids

Spencer Backman Hebrew University of Jerusalem, Francisco Santos University of Cantabria, Chi Ho Yuen[†] University of Bern

Introduction

Enumeration of Activity Classes

- We introduce a family of bijections between bases and special orientations of an oriented matroid, based on the picture of *Topological Representation Theorem*.
- This generalizes the core construction in Backman–Baker–Yuen (FPSAC 2018) on bijections between bases and the *Jacobian group* of a regular matroid.
- Connections with *Bernardi bijections* of planar maps, and *orientation activity* of Gioan and Las Vergnas.

Setting

M: an oriented matroid on E.
M' = M ⊔ {f}, M = M ⊔ {g}: generic single-element extension (resp. lift) of M.

Fix < on *E*. For an orientation \mathcal{O} , let $e_1 < \ldots < e_{\iota}$ (resp. $e'_1 < \ldots < e'_{\epsilon}$) be the *internally (resp. externally) active* elements, i.e., each e_i (resp. e'_j) is the minimal element of some signed cocircuit (resp. circuit) compatible with \mathcal{O} .

For $k = 1, 2, \ldots, \iota$, denote by F_k the union of all signed cocircuits compatible with \mathcal{O} whose minimal elements are at least e_k ; dually construct $F'_1, \ldots, F'_{\epsilon}$. The *activity class* of \mathcal{O} consists of all orientations obtained from reversing any union of components from $F_{\iota}, F_{\iota-1} \setminus F_{\iota}, \ldots, F_1 \setminus F_2; F'_{\epsilon}, F'_{\epsilon-1} \setminus F'_{\epsilon}, \ldots, F'_1 \setminus F'_2$.

- For each circuit (resp. cocircuit) C of M, $\sigma(C)$ (resp. $\sigma^*(C)$) is the unique orientation of C such that the sign of g (resp. f) in its lift (resp. extension) is +.
- An orientation \mathcal{O} of M is (σ, σ^*) -compatible if every signed circuit (resp. cocircuit) compatible with \mathcal{O} is oriented according to σ (resp. σ^*).

Important Example (*lexicographic data*): Fix a total ordering < of E together with a reference orientation of E. Orient each circuit (resp. cocircuit) according to the reference orientation of its minimal element.

Theorem (BSY 2018+)

Given a basis B, let $\mathcal{O}(B)$ be the orientation of M in which we orient each $e \notin B$ according to its orientation in $\sigma(C(B, e))$ and each $e \in B$ according to its orientation in $\sigma^*(C^*(B, e))$. Then $\beta_{\sigma,\sigma^*}: B \mapsto \mathcal{O}(B)$ is a bijection between bases and (σ, σ^*) -compatible orientations of M.

Proposition (Gioan–Las Vergnas 2005; BSY 2018+)

The number of activity classes of an oriented matroid equals the number of bases.

Proof: When σ, σ^* are induced by the same lexicographic data, (σ, σ^*) -compatible orientations form a system of representatives of the set of activity classes.

Proof of the Theorem (Sketch)

Main Ingredient: The Oriented Matroid Program (\widetilde{M}', g, f) .

Step 1: \widetilde{M} can be represented by an *affine pseudosphere arrangement* with g as the *hyperplane at infinity*. The regions are labeled by (σ -compatible) orientations of M.

Corollary

The number of (σ, σ^*) -compatible orientations of an oriented matroid equals the number of bases for any pair of (generic) σ, σ^* .

Remark: Compare with the theorem of Greene–Zaslavsky on the number of bounded regions in a hyperplane arrangement.

Planar Bernardi Bijections

Let G be a planar map with a root v. Given a spanning tree T of G, walk counterclockwise around T from v. Orient $e \in T$ away from v and $e \notin T$ "opposite" to the tour.

Step 2: Using $f \in M'$ as an *objective functional*, each region has an optimum with respect to f. The regions whose optima are *bounded* (not lying on g) correspond precisely to (σ, σ^*) -compatible orientations. Each such optimum is a vertex, which is the intersection of pseudospheres that form a basis of M.

Step 3: The optimisation map yields a bijection, verify that it is the same as β_{σ,σ^*} .

https://mathsites.unibe.ch/cyuen/

