Background

The set of k-dimensional subspaces of C^k is called the Grassmannian. Modern Schubert calculus aims to study its geometry through its (connective) K-theory ring. The Schubert structure sheaf basis is represented by symmetric Grothendieck polynomials $e_\lambda(x)$. A. Buch has shown that $e_\lambda(x)$ can be given as a sum over set-valued tableaux SV^λ. Buch's uncracking bijection gives a crystal structure where SV^λ realises the representation of some quantum group. One application of our proposed K-crystal structure is to construct a K-theoretic analog of crystals on set-valued tableaux.

Crystal structure

Let $T \in SV^\lambda$ and $i \in \{1, \ldots, n\}$. Write $w = \ell(T)$ and $\ell(T) = (i_1, \ldots, i_{\ell(T)})$ where $\ell(T) = \ell(T)$. A. Buch's uncracking bijection gives a crystal structure where SV^λ realises the representation of some quantum group. One application of our proposed K-crystal structure is to construct a K-theoretic analog of crystals on set-valued tableaux.

Weak K-crystal example

Let U and T be set-valued tableaux of shape λ and μ/λ, respectively. We define operators h_i on set-valued tableaux whose entries are in an alphabet \mathcal{A}. h_i is defined by $h_i(u) = u$ for all $i \in \mathcal{A}$, which gives the set of all λ-tableaux with a given shape. We define operators h_i on set-valued tableaux whose entries are in an alphabet \mathcal{A}. h_i is defined by $h_i(u) = u$ for all $i \in \mathcal{A}$, which gives the set of all λ-tableaux with a given shape.

Rectification

Let U and T be set-valued tableaux of shape λ and μ/λ, respectively. We define operators h_i on set-valued tableaux whose entries are in an alphabet \mathcal{A}. h_i is defined by $h_i(u) = u$ for all $i \in \mathcal{A}$, which gives the set of all λ-tableaux with a given shape.

Open problems

- Construct a weak K-crystal structure on SV^λ.
- Determine a tensor product rule such that the result categorifies the K-theory ring of the Grassmannian.
- Determine a K-crystal insertion rule such that K-rectification agrees with Buch's insertion algorithm.
- Determine a combinatorial rule that characterizes the set-valued tableaux that appear in SV^λ for a given weak K-crystal structure.