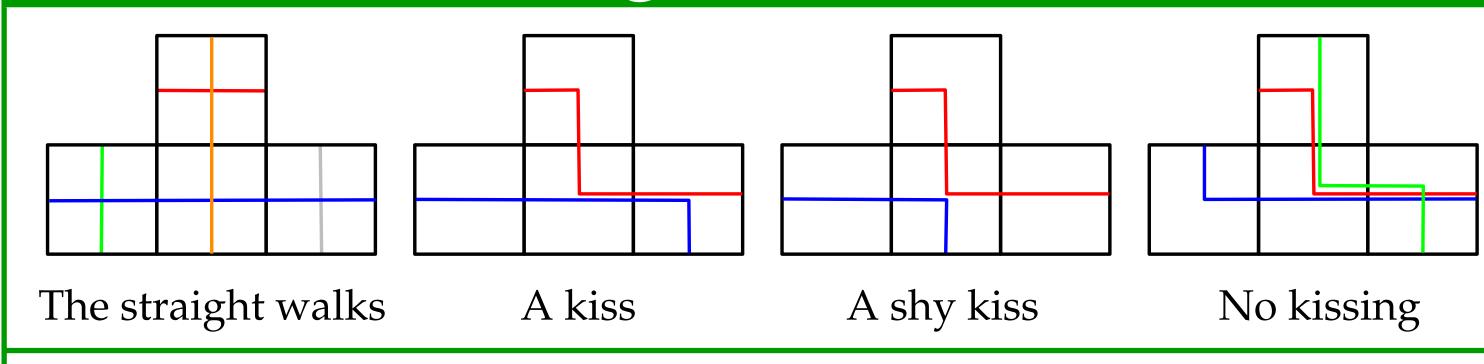
Non-kissing — VS — Non-crossing Yann Palu (UPJV) jtw Vincent Pilaud (LIX, CNRS) and Pierre-Guy Plamondon (Orsay)

From walks on a grid [McConville]...



Walk = NW to SE maximal path in a grid of any (fixed) shape. A walk ω kisses a walk ω' if

- ω and ω' share a common subpath ρ ,
- ω enters ρ from W and leaves it towards S,
- ω' enters ρ from N and leaves it towards E.

(Reduced) non-kissing complex = clique complex of (non-straight) walks for the compatibility relation of non-kissing.Thm [McC]: *The reduced non-kissing complex is pure and thin.*

... to walks on a gentle bound quiver [PPP]

Gentle bound quiver Q = oriented graph with relations (forbidden paths) of lenght 2; obtained by glueings of a local configuration. Moreover, any vertex must have out-degree at most 2 and in-degree at most 2.

Blossoming bound quiver Q^* = obtained by making each (old) vertex 4-valent.

Exm. The gentle bound quiver of a grid, and its blossoming quiver:

String of Q = word on arrows and their inverses not containing any $\alpha \alpha^{-1}$, $\alpha^{-1} \alpha$ nor any $\alpha \beta$, $\beta^{-1} \alpha^{-1}$ if $\alpha \beta$ is a relation.

From accordions on a disk [Garver-McC]...

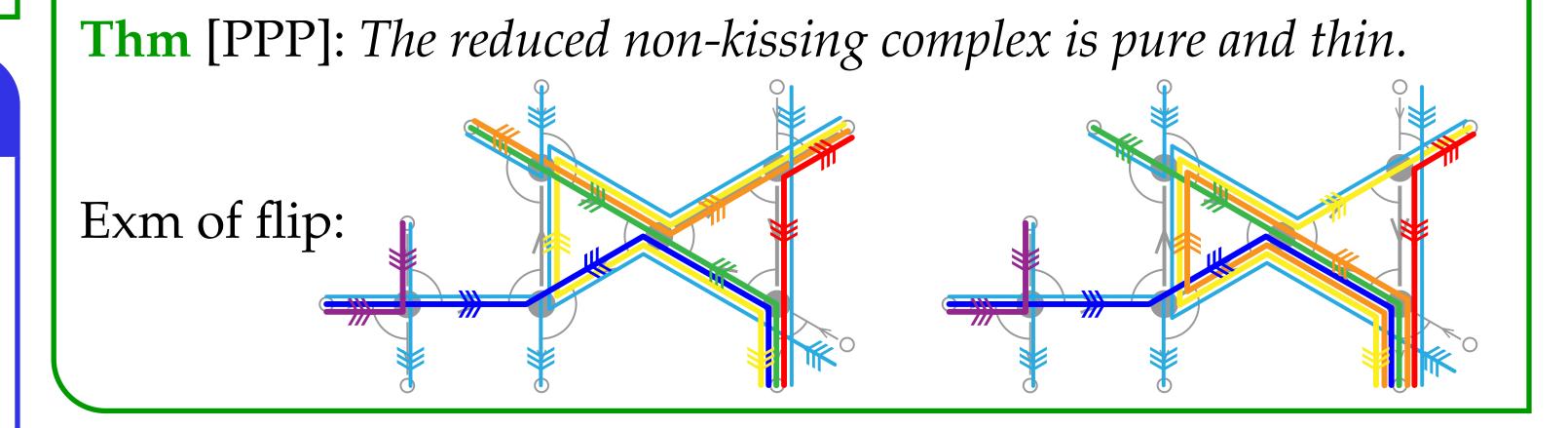
Exm:

- a dissection (green),
- some accordions (blue),
- some non-accordions (red).

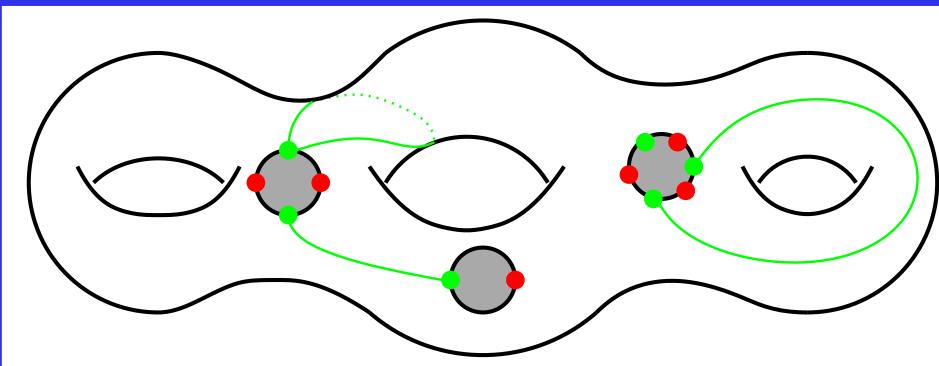
Accordions not crossing any other accordion are dotted blue.

(In the language of [Manneville–Pilaud])Vertices of alternating colour green-blue-red-blue.Dissection = collection of non-crossing green diagonals.

Walk on Q = maximal string of Q^{*} (thus blossom to blossom).



... to accordions on a Riemann surface [PPP]



Some arcs on a Riemann surface with boundary and marked points.

Accordion = blue diagonal crossing a connected subset of the dissection (including boundary segments).

(Reduced) non-crossing complex = clique complex of (non-dotted) accordions of a fixed dissection for the compatibility relation of non-crossing.

Thm [G-McC]: *The reduced non-crossing complex is pure and thin.*

From dissections to gentle bound quivers

Quiver of a dissection:

- Vertices = arcs of the dissection;
- Arrows = angles;
- Relations = two consecutive arrows in a same cell.

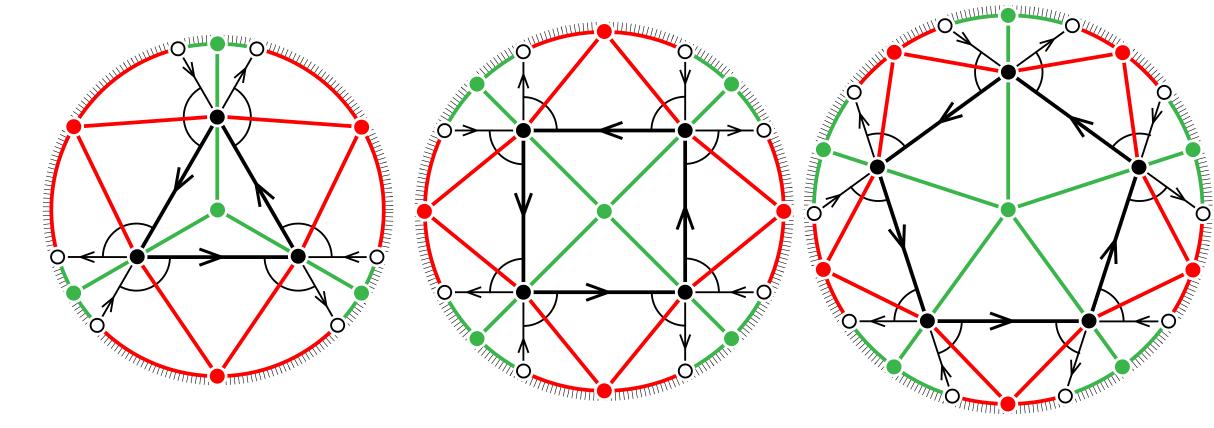
Take boundary segments into account to obtain the

section contains exactly one red vertex, possibly not on the bounday) dissection of a $\sqrt[7]{}$ Riemann surface, can define accordions.

Given a dualizable (= every cell of the dis-

Thm [PPP]: *The reduced non-crossing complex is pure and thin.*

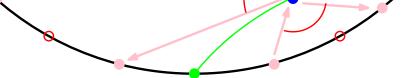
From gentle bound quivers to dissections



The surface of three cyclic quivers

Given a gentle bound quiver *Q*, take its blossoming, then glue a green (resp. red) triangle to the left (resp. right) of each arrow. Glue two consecutive red (resp. green) triangles if the corresponding arrows (resp. do not) form a relation.

blossoming quiver.

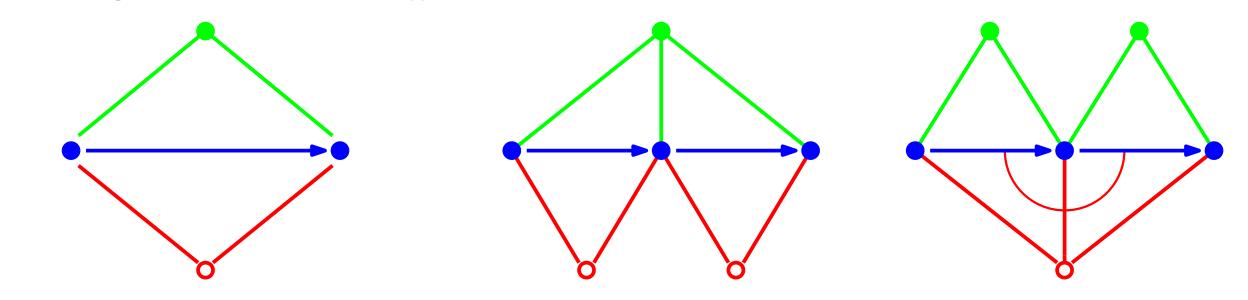


Prop: The bound quiver associated with any dualizable dissection of a marked surface is gentle.

Main Results [PPP]

Thm: Gentle bound quivers \leftrightarrow Marked surfaces endowed with a(see also [Baur-Coelho-Simoes])pair of dual dissections.

Thm: Walks on the quiver $Q \leftrightarrow Accordions$ on the surface S
Kissing $\leftrightarrow Crossing$
Non-kissing complex of $Q \leftrightarrow Non$ -crossing complex of S.



Prop: The construction above yields a marked surface endowed with a pair of dual dissections, given by green / red arcs.

Relation with representation theory

arXiv:1707.07574 – NKC and tau-tilting for gentle algebras. arXiv:1807.04730 – NKC and NCC for locally gentle algebras. yann.palu@u-picardie.fr