Background

One of the gems of 20th-century mathematics is the theory of symmetric functions and symmetric polynomials. Interpreting Schur functions through the cohomology of Grassmannians leads one to consider K-theoretic analogues of the classical bases. Additionally, we wish to lift the theory of symmetric polynomials to larger rings of quasisymmetric and asymmetric polynomials.

We introduce two new bases of $ASym_n = \mathbb{Z}[x_1, \ldots, x_n]$. The quasiLascoux basis is a K-theoretic deformation of the quasikyel basis that is also an asymmetric lift of quasiGrotendieck polynomials, a refinement of the Lascoux basis, and a simultaneous coarsening of the glide and Lascoux atom bases. Kaons are K-theoretic deformations of pions that are simultaneous refinements of glides and Lascoux atoms.

Theorem 2:

Given a set-valued filling F of a skyline diagram of shape a and weight $w(F)$, the quasiLascoux polynomials \mathcal{L}_a can be obtained from $\mathcal{L}_{\mathcal{F}}$ by the following general formula:

$$\mathcal{L}_a = \sum_{F} w(F) \mathcal{L}_{\mathcal{F}}$$

Definition 1:

For a weak composition a, the quasiLascoux polynomial \mathcal{L}_a is a positive sum of multi-fundamental polynomials $\mathcal{L}_a = \sum_{\mathcal{F} \in \mathcal{F}[a]} \mathcal{L}_{\mathcal{F}}$, where $\mathcal{F}[a]$ is a set of all possible skyline diagrams of shape a.

Theorem 2:

Each quasiGrotendieck polynomial $\mathcal{G}_a \in QSym_n$ is a positive sum of multi-fundamental polynomials $\mathcal{G}_a = \sum_{\mathcal{F} \in \mathcal{F}[a]} \mathcal{G}_{\mathcal{F}}$, where $\mathcal{F}[a]$ is a set of all possible skyline diagrams of shape a.

Conjecture 1:

For a weak composition a, $\sum \mathcal{M}_a \in \{0, 1\}$ and $\sum \mathcal{G}_a \in \{0, 1\}$, where both sums are over all weak compositions a.

Conjecture 2:

For a weak composition a, $\mathcal{L}_a \in \{0, 1\}$. \mathcal{L}_a is a positive sum of Lascoux atoms.

Conjecture 3:

For any weak compositions a and b, the product $\mathcal{L}_a \cdot \mathcal{L}_b$ of a kaon and a glide polynomial expands positively in kaons.

Conjecture 4:

$(\text{Reiner}, \text{Shimozono}, \text{Yong})$ Each quasiGrotendieck polynomial \mathcal{G}_a is a positive sum of Lascoux polynomials \mathcal{L}_b.

References

