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Introduction
Given a simplicial complex ∆ of dimension
d − 1, let (f0, f1, . . . , fd−1) be the f -vector, i.e
fi counts the number of i-dimensional faces.
Classification problem: Given a class S
of simplicial complexes, what are the possible
f -vectors of the elements of S.
Examples:

• Krukal-Katona theorem: f -vectors of gen-
eral complexes.

• g-theorem: f -vectors of simplicial poly-
topes (spheres?).

• M -sequences: f -vectors of Cohen-
Macaulay complexes.

Simpler: Given that ∆ is in S and has dimen-
sion d − 1 bound fk in terms of f0 (number of
vertices) and understand the extremal cases.
Example: For simplicial polytopes this leads to
the stories of stacked and neighborly polytopes,
i.e we learn a lot of the geometry of polytopes
from answers to the question!

Matroid Complexes
If M is a matroid, then there are three natural
complexes associated to them:

1. Independence complexes: Indepen-
dent sets.

2. Broken circuit complexes: Associated
to an order. Independence complexes con-
taining no broken circuits (removing min-
imal elements from circuits).

3. (Order complexes of) Geometric lat-
tices: Flats/closed sets ordered by inclu-
sion.

The classification problem for matroids is com-
pletely out of reach at the moment. Upper
an lower bound questions are not too interest-
ing: for example uniform matroids make upper
bounds trivial.

Main Theorems
All matroid complexes are shellable thus homo-
topy equivalent to wedges of equidimensional
spheres.
Main Theorem [1]: Fix d, k and a class of
complexes (above). The number of complexes
in the class homotopy equivalent to a wedge of
k spheres of dimension d− 1 is finite.
Can be phrased in many different ways:

• In terms of the top homology group.

• In terms of d and the reduced Euler char-
acteristic, whose absolute value is k.

• In terms of d and hd = k, the top h-
number, where

d∑
j=0

hjx
d =

d∑
j=0

fj−1x
j(1− x)d− j

Idea: It may be a good idea to change the
parameters for matroid complexes in the up-
per/lower bound questions.
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Further Questions
• For independece complexes what are the

upper bounds for simple matroids?

• What are the equality cases for the upper
bounds in Broken Circuit complexes?

• Is there an algorithm that generates all
matroids of a given rank and topology effi-
ciently for some (hopefully not very small)
parameters?

Independence Complexes
There are several ways to understand the phenomenon for independence complexes:

1. Homology bases: Björner constructed a basis for the homology that covers the complex and
consists of spheres with finitely many combinatorial types.

2. Internal activity poset: The internal activity poset ordered by inclusion has exactly k
maximal elements (Dawson 84, Las Vergnas). Bounds the number of vertices!

3. h-vector decompostions: Explicit bounds for the number of such matroids in terms matroids
with k bases.

4. Convex ear decomposition: Chari (97) showed that the independence complex can be
constructed by attaching very special kinds of handles (PS-balls) to an initial sphere (PS-
sphere) as we explain below.

PS balls and spheres: Joins of boundaries of simplices and one (possibly empty) simplex. A
PS Ear decompositions of a d − 1-dimensional simplicial complex is a collection of complexes
Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γk−1, where Γ0 is a PS-Ball and Γi+1 is obtained from Γi by attaching a PS-ball
along the boundary.
Theorem [2]: Independence complexes admit PS-ear decompositions.
Theorem: From the PS-ear decomposition one gets the finiteness theorem and a characterization
of the extremal upper bound matroids! In particular:

hi(I(M)) ≤
(
d

i

)
+ (k − 1)

(
d− 1

i− 1

)
, 0 ≤ i ≤ d. (1)

The following is the unique maximizer when d = 4 and k = 7.

Note: The unique elements that maximize all f and h entries simultaneously, are not simple.
Restricting to simple matroids is a challenging task!

Broken Circuit Complexes
Example Consider the graph
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The circuits are [1234], [1256], [3456] so the bro-
ken circuits are [234], [256], [456]. The bases con-
taining no broken circuits are

[1245], [1246], [1235], [1236], [1345], [1346], [1356].

The h-vector is (1, 2, 3, 1, 0).
All independence complexes are broken circuit
complexes, but the converse fails.
Main issue: Most of the techniques break
down! No nice homology bases, or well behaved
internal activity, or Convex-ear decompositions!
Nevertheless
Theorem [3] The number of broken circuit
complexes homotopy equivalent to a wedge of
k spheres of dimension d− 1 is finite.

Geometric Complexes
The following is an example of an affine matroid
with the corresponding lattice of flats.
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In this case there is a stronger statement than
in the Main Theorem:
Theorem Fix a natural number k. There exist
finitely many geometric lattices L1, · · · , Lm such
that if L is any finite geometric lattice satisfying
|χ̃(O(L))| = k then L = Li ×Bd for some i, d.
Note: For geometric lattices the top h− number
is the mobius function on the whole poset.
This can be computed using EL-labelings.


