# **Deformations of Coxeter permutahedra and Coxeter submodular functions**

F. Ardila<sup>1</sup>, **F. Castillo**<sup>2</sup>, C. Eur<sup>3</sup>, A. Postnikov<sup>4</sup> <sup>1</sup>San Francisco State University; <sup>2</sup>University of Kansas; <sup>3</sup>University of California, Berkeley; <sup>4</sup>Massachusetts Institute of Technology; <u>Presenter's email:</u> fcastillo@ku.edu



A polyhedron Q is a *deformation of* P if the normal fan  $\Sigma_Q$  is a coarsening of the normal fan  $\Sigma_P$ .

When P is a simple polytope, it is shown in [4, Theorem 15.3] that we may think of the deformations of P equivalently as being obtained by any of the following three procedures:

• moving the vertices of P while preserving the direction of each edge, or

 $\bullet$  changing the edge lengths of P while preserving the direction of each edge, or

• moving the facets of P while preserving their directions, without allowing a facet to move past a vertex.





There are many examples of generalized permutohedra. One of the most studied are matroid polytopes

**Theorem (Nguyen [3])** Connected matroid polytopes are extremal rays of the submodular cone. In other words, they cannot be decomposed as minkowski sum of two other polytopes (unless one of them is a point).

We can describe some extremal rays.

## **Fundamental weight polytopes**

The *fundamental weight polytopes* or  $\Phi$ -hypersimplices of the root system  $\Phi$  are the *d* weight polytopes  $P_{\Phi}(\lambda_1), \ldots, P_{\Phi}(\lambda_d)$  corresponding to the fundamental weights of  $\Phi$ .



The standard 3-permutahedron and one of its deformations.

The *Minkowski sum* of two polytopes Q and R in the same vector space V is the polytope

**The root system**  $B_3$ 

### **Coxeter Complex**

Given a root system, the Coxeter complex is the fan obtained with slicing the whole space with the hyperplanes perpendicular to the roots.

 $P + Q := \{ p + q : p \in P, q \in Q \}.$ 









P is a deformation of P+Q. This is, up to scaling, the only source of deformations. For this reason, deformations of polytopes are also often called *weak Minkowski summands*.

**Theorem (Shepard [2]):** If *P* and *Q* be polytopes, then *Q* is a deformation of *P* if and only if there exist a polytope *R* and a scalar  $\lambda > 0$  such that  $Q + R = \lambda P$ .

#### Zonotopes

Let  $\mathcal{A} = \{v_1, \ldots, v_m\} \subset V$  be a set of vectors and let  $\mathcal{H} = \{H_1, \ldots, H_m\}$  be the corresponding hyperplane arrangement in U given by the hyperplanes  $H_i = \{u \in U : \langle u, v_i \rangle = 0\}$  for  $1 \leq i \leq m$ . The hyperplane arrangement  $\mathcal{H}$  then determines a fan  $\Sigma_{\mathcal{H}}$  whose maximal cones are the closures of the connected components of the arrangement complement.

Let  $\mathcal{A} = \{v_1, \ldots, v_m\} \subset V$ . The *zonotope* of  $\mathring{A}$  is the Minkowski sum

$$\mathcal{Z}(\mathcal{A}) := [0, v_1] + \dots + [0, v_m]$$

We can describe the (extended) deformations of  $\mathcal{Z}(\mathcal{A})$  easily as follows.

**Proposition** Let  $\mathcal{A}$  be a finite set of vectors in V. A polytope is a deformation of the zonotope  $\mathcal{Z}(\mathcal{A})$  if and only if every edge is parallel to some vector in  $\mathcal{A}$ .

The group generated by all the reflections through hyperplanes is *finite* and denoted W (for Weyl group).

We can arbitrarily choose one region and call it the *Fundamental Chamber*. The rays spanning that region are called the fundamental weights. Any element obtained by applying W to the fundamental weight is call a weight.

#### **Coxeter submodular functions**

We can parametrize the space of all deformations of the Coxeter complex. We do this using functions on the (finitely many!) weights as parameters.

**Theorem [1]:** Let  $\Phi$  be a finite root system with Weyl group Wand  $\mathcal{R} = W\{\lambda_1, \dots, \lambda_d\}$  be the set of W-conjugates of fundamental weights  $\lambda_1, \dots, \lambda_d$ . The deformations of the  $\Phi$ -permutahedron are in bijection with the  $\Phi$ -submodular functions  $h :\rightarrow$  that satisfy the following inequalities:

For every element  $w \in W$ , every simple reflection  $s_i$ , and corresponding fundamental weight  $\lambda_i$ ,

$$h(w\lambda_i) + h(ws_i\lambda_i) \ge \sum_{j \in N(i)} -A_{ji}h(w\lambda_j)$$
(1)

where N(i) is the set of neighbors of i in the Dynkin diagram and A is the Cartan matrix.

Furthermore, all such inequalities are *facet defining* and we can

**Theorem [1]:** A weight polytope P of a crystallographic root system  $\Phi$  is indecomposable if and only if  $P = kP_{\Phi}(\lambda_i)$  for k > 0 and a fundamental weight  $\lambda_i$  such that the edges adjacent to i in the Dynkin diagram are unlabeled; that is, the Dynkin diagram  $\Gamma(\Phi_{N(i)\cup i})$  is simply laced.

#### **Further Questions**

In type A, every generalized permutahedron in d is a signed Minkowski sum of the simplices  $\Delta_S = \operatorname{conv}(e_s : s \in S)$  for  $S \subseteq [d]$ . Geometrically, this corresponds to the statement that the  $2^d - 1$  polytopes  $\Delta_S$ , which are rays of the  $(2^d - 1)$ -dimensional submodular cone, are also a basis for  $2^{d-1}$ . Remarkably, one may compute the mixed volumes of these polytopes  $P_S$ , and this gives combinatorial formulas for the volume of any generalized permutahedron.

Is there a similarly nice choice of rays of the  $\Phi$ -submodular cone that generate all others? Can one compute their mixed volumes?

#### References

#### **Root Systems**

Root Systems are highly symmetric vector configurations.

count them.

## Type A

In Type A the theorem recovers the known result that generalized permutohedra are in bijection with *submodular functions* i.e., with functions  $f: 2^{[n]} \to \mathbb{R}$  such that

 $f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$ 

[1] F. Ardila, F. Castillo, C. Eur, and A. Postnikov. *Coxeter submodular functions and deformations of Coxeter permutahedra*, 2019.

[2] Branko Grünbaum. *Convex polytopes*, volume 221 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.

[3] Hien Quang Nguyen. Semimodular functions and combinatorial geometries. *Trans. Amer. Math. Soc.*, 238:355–383, 1978.

[4] Alex Postnikov, Victor Reiner, and Lauren Williams. Faces of generalized permutohedra. *Doc. Math.*, 13:207–273, 2008.