Multiplicities of Schubert varieties in the symplectic flag varieties

Minyoung Jeon^{*1} and Ryotaro Kawago^{†2} (joint with D. Anderson¹ and T. Ikeda²) ¹The Ohio State University & ²Okayama University of Science

*jeon.163@osu.edu & [†]kawago3@gmail.com

* and † are presenters

Objectives

The **multiplicity** of a point on a Schubert variety is a positive integer which depends on two elements of the Weyl group. What is a combinatorial formula for this number? We give an answer for vexillary Schubert varieties in the symplectic flag variety.

Previous research

- Schubert varieties in Grassmannian [4]
- Vexillary Schubert varieties in flag variety [5]
- Schubert varieties in Lagrangian Grassmannian [2][3]

Example

We describe $\lambda(w)$ and μ from w and v as follows:

Shape of a vexillary permutation $w = \overline{1} \ \overline{2} \ 3 \ 4 \ \overline{5}$

Outer shape $w = \overline{1} \ \overline{2} \ 3 \ 4 \ \overline{5}, \ v = \overline{2} \ \overline{3} \ \overline{4} \ 1 \ \overline{5}$

Basic Notation

• $W_n \cong S_n \rtimes \{\pm 1\}^n$, the group of signed permutations.

• $V = \mathbb{C}^{2n}$ with a non-degenerate skew symmetric bilinear form $\langle \cdot, \cdot \rangle$.

• $Fl_n^C = \{E_\bullet \mid E_\bullet : E_n \subset \cdots \subset E_1 \subset V \text{ of isotropic subspaces, dim } E_i = n+1-i\}.$

Vexillary Signed Permutations and Schubert Varieties

A triple is $\tau = (\mathbf{k}, \mathbf{p}, \mathbf{q})$ where $\mathbf{k} : 0 < k_1 < \cdots < k_s$, $\mathbf{p} : p_1 \ge \cdots \ge p_s > 0$, and $\mathbf{q} : q_1 \ge \cdots \ge q_s > 0$ satisfy $(p_i - p_{i+1}) + (q_i - q_{i+1}) > k_{i+1} - k_i$ for all $i = 1, \dots, s - 1$.

We can construct $w \in W_n$ from a triple τ in a certain way.

A signed permutation $w \in W_n$ is *vexillary* if it can be constructed as $w = w(\tau)$, for some triple τ .

The Schubert variety Ω_w is defined by rank conditions for a general permutation $w \in W_n$. It has codimension $\ell(w)$ in the symplectic flag variety.

The Schubert variety associated to a vexillary permutation w is defined by

 $\Omega_w = \{E_{\bullet} \mid \dim(E_{p_i} \cap F_{q_i}) \ge k_i \text{ for } i = 1, \dots, s\} \subseteq Fl_n^C,$ where F_{\bullet} is a fixed isotropic flag.

Example

$w = \overline{1} \ \overline{2} \ 3 \ 4 \ \overline{5}$

 $\overline{5}$ $\overline{4}$ $\overline{3}$ $\overline{2}$ $\overline{1}$

 $\lambda = (9, 3, 1).$

 $\mu = (9, 4, 3, 1).$

Excited Young Diagram

Given two strict partitions μ and λ , let $\mathcal{E}_{\mu}(\lambda)$ be the set of diagrams that is obtained by the following successive applications of elementary excitations.

By successive applications of elementary excitations, we obtain the multiplicity of the Schubert variety Ω_w in Lagrangian Grassmannian at the point e_v . [3]

Example

$w = \overline{1} \ \overline{2} \ 3 \ 4 \ \overline{5}, \ v = \overline{2} \ \overline{3} \ \overline{4} \ 1 \ \overline{5}.$

The essential set $\mathcal{E}ss(w)$ corresponding to a vexillary signed permutation w consists of the southeast corners of the diagram; it gives a minimal list of rank conditions [1]. In the above example, it is the boxes labelled $\mathfrak{e}_1, \mathfrak{e}_2$ and \mathfrak{e}_3

Hilbert-Samuel Multiplicity

Let X be an algebraic variety containing a point p. Let $R = \mathcal{O}_{X,p}$ be the local ring of X at p with the maximal ideal \mathfrak{m} .

The Hilbert-Samuel polynomial of R is for $n \gg 0$

 $\mathcal{P}_R(n) = \dim_{\mathbb{C}}(R/\mathfrak{m}^n) = (m/d!) \ x^d + \cdots,$ where $d = \dim R$, $m \in \mathbb{Z}_{>0}$.

The Hilbert-Samuel multiplicity of R is

 $\Rightarrow \operatorname{mult}_{e_v}(\Omega_w) = 6$

Theorem on Multiplicity

Let w be vexillary and $v \in W_n$ such that $w \leq v$. For $\lambda = \lambda(w)$ and μ from the pair (v, w), the Hilbert-Samuel multiplicity is given by $\operatorname{mult}_{e_v}(\Omega_w) = \# \mathcal{E}_{\mu}(\lambda).$

Our proof reduces to the (Lagrangian) Grassmannian case, and also gives a new and simple argument for the type A case considered by Li-Yong.

Inner and Outer Shapes

We define strict partitions by vexillary permutation w and signed permutation v such that $v \ge w$. Let $r_w(\mathfrak{e})$ count the dots in the north-west corner of \mathfrak{e} of the diagram associated to w.

Shape of a vexillary permutation $\lambda(w)$

Outer shape μ

- Obtain the box \mathfrak{e}' by moving diagonally north-west by $r_w(\mathfrak{e})$ units for each $\mathfrak{e} \in \mathcal{E}ss(w)$
- Denote λ by the smallest shifted diagram containing all the \mathfrak{e}' with $\mathfrak{e} \in \mathcal{E}ss(w)$.

• Obtain the box \mathfrak{e}' by moving diagonally north-west by $r_v(\mathfrak{e})$ units for each $\mathfrak{e} \in \mathcal{E}ss(w)$

• Denote μ by the smallest shifted diagram containing all the \mathfrak{e}' with $\mathfrak{e} \in \mathcal{E}ss(w)$.

Future work

Extend the result to the other type B and D.

References

- [1] D. Anderson, *Diagrams and essential sets for signed permutations*, Electron. J. Combin. 25 (2018), no. 3, Paper 3.46, 23 pp.
- [2] S. Ghorpade and K. Raghavan, *Hilbert functions of points on Schubert varieties in the symplectic Grassmannian*, Trans. Amer. Math. Soc., **358.12**, (2006), 5401-5423.
- [3] T. Ikeda and H. Naruse, *Excited Young diagrams and equivariant Schubert calculus*, Trans. Amer. Math. Soc., **361**, (2009), 5193-5221.
- [4] V. Kodiyalam and K. Raghavan, *Hilbert functions of points on Schubert varieties in Grassmannians*, J. Algebra, **207.1**, (2003), 28-54.
- [5] L. Li and A. Yong, Some degenerations of Kazhdan-Lusztig ideals and multiplicities of Schubert varieties, Adv. Math. 229, (2012), no. 1, 633-667.